Understanding the atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing antibodies of the SARS-CoV-2 spike protein without directly blocking receptor engagement remains an important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: they target a deeply conserved, cryptic epitope on the receptor-binding domain yet exhibit variable neutralization potency across subgroups F1 (CR3022, EY6A, COVA1-16), F2 (DH1047), and F3 (S2X259). The molecular basis for this variability is not fully understood. Here, we employed a multi-modal computational approach integrating atomistic and coarse-grained molecular dynamics simulations, binding free energy calculations, mutational scanning, and dynamic network analysis to elucidate how these antibodies engage the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and influence its function. Our results reveal that neutralization efficacy arises from the interplay of direct interfacial interactions and allosteric effects. Group F1 antibodies (CR3022, EY6A, COVA1-16) primarily operate via classic allostery, modulating flexibility in RBD loop regions to indirectly interfere with the ACE2 receptor binding through long-range effects. Group F2 antibody DH1047 represents an intermediate mechanism, combining partial steric hindrance—through engagement of ACE2-critical residues T376, R408, V503, and Y508—with significant allosteric influence, facilitated by localized communication pathways linking the epitope to the receptor interface. Group F3 antibody S2X259 achieves potent neutralization through a synergistic mechanism involving direct competition with ACE2 and localized allosteric stabilization, albeit with potentially increased escape vulnerability. Dynamic network analysis identified a conserved “allosteric ring” within the RBD core that serves as a structural scaffold for long-range signal propagation, with antibody-specific extensions modulating communication to the ACE2 interface. These findings support a model where Class 4 neutralization strategies evolve through the refinement of peripheral allosteric connections rather than epitope redesign. This study establishes a robust computational framework for understanding the atomistic basis of neutralization activity and immune escape for Class 4 antibodies, highlighting how the interplay of binding energetics, conformational dynamics, and allosteric modulation governs their effectiveness against SARS-CoV-2.