Wounds are prone to infection which may be fatal to the life of the patient. The use of antibiotics is essential for managing bacterial infections in wounds, but the long-term use of high doses of antibiotics may lead to bacterial drug resistance and even to creation of superbacteria. Therefore, the development of targeted antimicrobial treatment strategies and the reduction in antibiotic usage are of utmost urgency. In this study, a multifunctional nanodrug delivery system (Cef-rhEGF@ZIF-8@ConA) for the treatment of bacteriostatic infection was synthesized through self-assembly of Zn2+, cefradine (Cef) and recombinant human epidermal growth factor (rhEGF), then conjugated with concanavalin (ConA), which undergoes pH-responsive degradation to release the drugs. First, ConA can specifically combine with bacteria and inhibit the rapid release of Zn2+ ions, thus achieving a long-acting antibacterial effect. Cef exerts its antibacterial effect by inhibiting the synthesis of bacterial membrane proteins. Finally, Zn2+ ions released from the Zn-metal-organic framework (MOF) demonstrate bacteriostatic properties by enhancing the permeability of the bacterial cell membrane. Furthermore, rhEGF upregulates angiogenesis-associated genes, thereby promoting angiogenesis, re-epithelialization and wound healing processes. The results showed that Cef-rhEGF@ZIF-8@ConA has good biocompatibility, with antibacterial efficacy against Staphylococcus aureus and Escherichia coli of 99.61 % and 99.75 %, respectively. These nanomaterials can inhibit the release of inflammatory cytokines and promote the release of anti-inflammatory cytokines, while also stimulating the proliferation of fibroblasts to facilitate wound healing. Taken together, the Cef-rhEGF@ZIF-8@ConA nanosystem is an excellent candidate in clinical therapeutics for bacteriostatic infection and wound healing.