“炎症”通常意味着红肿热痛——比如喉咙发炎、皮肤感染,但你是否想过,大脑也可能“发炎”,这种看不见摸不着的“神经炎症”,可能正是自闭症、多动症、抽动症,甚至某些孩子突然出现的强迫行为、情绪崩溃、恐惧进食背后的共同推手。
过去几十年,医学界普遍将这些行为问题归为“心理障碍”或“教养问题”,然而,近年来越来越多的研究揭示:免疫系统不仅守护身体免受病毒细菌侵袭,也深度参与了大脑的发育与功能调节。当免疫反应失调,尤其在生命早期关键窗口期(如孕期或婴幼儿阶段)出现免疫异常激活,就可能干扰神经回路的正常构建,埋下神经发育障碍的种子。
2025年8月,一项发表于国际权威期刊《国际分子科学杂志》的重要综述研究(Gagliano et al., 2025)系统梳理了神经发育障碍(NDDs)与儿童急性发作神经精神综合征(PANS)之间免疫-炎症联系。
这项由意大利、美国等多国科学家合作完成的研究,整合了来自全球上百项高质量研究,提出一个颠覆性观点:这些看似不同的精神行为问题,可能共享一条“免疫-神经炎症”的致病通路。
一、免神经发育障碍(NDDs):真的是“心理问题”吗?
▸ 神经发育障碍(NDDs)
根据《精神障碍诊断与统计手册》(DSM-5),神经发育障碍 (NDDs)是一大类在儿童期起病、影响大脑发育和功能的疾病统称,主要包括:
· 自闭症谱系障碍(ASD):社交沟通困难、重复刻板行为、兴趣狭窄
· 注意缺陷多动障碍(ADHD):注意力难以集中、坐不住、冲动行事
· 抽动障碍/图雷特综合征(TD/TS):不自主地眨眼、耸肩、清嗓子,甚至发出怪声
· 智力障碍(ID):学习能力、生活自理能力显著低于同龄人
· 特定学习障碍(SLDs):阅读、书写或数学能力严重落后,智力通常正常
长期以来,这些障碍主要依靠行为观察和临床评估来诊断,缺乏明确的生物学标志物,因此,社会上常存在误解:认为这些问题源于“父母管教不当”“孩子懒惰”或“性格古怪”,许多家庭因此承受巨大压力,甚至陷入自责。
▸ 神经发育障碍(NDDs)生理共患病
现代神经科学证实,这些障碍源于大脑结构与功能的生物学差异,更关键的是,大量研究发现,神经发育障碍(NDDs)患者常常伴随其他身体问题:
· 过敏、湿疹、哮喘
· 自身免疫病(如1型糖尿病、桥本甲状腺炎、银屑病)
· 胃肠道问题(如便秘、腹泻、食物不耐受)
· 睡眠障碍、免疫力低下等
这种“共病现象”强烈提示:问题可能不止在大脑,而涉及全身性的生理失衡——尤其是免疫系统的异常,换句话说,孩子的“行为问题”,可能是身体内部“炎症风暴”的外在表现。
二、免疫系统:不只是“卫士”,更是大脑“建筑师”
要理解这一点,我们必须更新对免疫系统的认知,传统观念认为,大脑是一个“免疫豁免”器官——血脑屏障像一道坚固的城墙,将多数免疫细胞和炎症因子挡在外面,确保大脑环境稳定,但近二十年的研究不断完善并修正了这一看法:血脑屏障并非绝对“不可逾越”。
▸ 小胶质细胞:大脑的“常驻免疫工程师”
大脑中有一种特殊的免疫细胞,叫小胶质细胞,它们从胎儿期就开始工作,不仅是“哨兵”,更是“建筑师”:
1. 在发育早期,它们帮助神经元迁移到正确位置
2. 在儿童期,它们“修剪”多余的突触连接,让神经网络更高效
3. 它们还参与髓鞘形成(神经信号的“绝缘层”),星形胶质细胞调控等关键过程
可以说,没有小胶质细胞的精准调控,就无法形成健康的大脑网络,但如果小胶质细胞被过度激活(如感染或毒素刺激),它们就会从“建设者”变成“破坏者”,释放大量炎症因子,损伤神经元,干扰突触可塑性。
▸ 免疫-脑对话:细胞因子是“信使”
免疫系统通过释放细胞因子(如IL-6、TNF-α、IL-17)等信号分子,与神经元“对话”,这些细胞因子:
1. 影响多巴胺、血清素等神经递质的合成与释放
2. 调节情绪、注意力、冲动控制
3. 改变神经回路的兴奋性与连接强度
因此,免疫系统不仅是防御者,更是大脑发育“合作者”甚至“指挥者”之一。
▸ 关键窗口期:生命最初1000天
从怀孕到孩子2岁,被称为“生命最初1000天”,这一时期,大脑以惊人速度发育,每天生成数百万神经元,建立万亿级连接,而免疫系统与大脑的互动尤为密切。
任何干扰(如母亲感染、压力、营养不良、环境污染)都可能通过免疫机制“编程”胎儿的大脑,使其在出生后对压力、感染等刺激更为敏感,更容易出现神经精神症状。
三、母体免疫激活:孩子大脑健康的“第一道警报”
综述中最引人注目的发现之一,是母亲在怀孕期间的免疫状态对孩子神经发育具有决定性影响。
▸ 什么是“母体免疫激活”(Maternal Immune Activation, MIA)?
当孕妇遭遇以下情况时,免疫系统会被激活,释放大量促炎细胞因子(如IL-6、TNF-α):
· 感染(如流感、尿路感染、新冠)
· 自身免疫病(如系统性红斑狼疮、桥本甲状腺炎)
· 慢性炎症状态(如肥胖、哮喘、过敏)
这些炎症因子虽不能直接穿过胎盘,却可以:
· 改变胎盘功能,影响营养和氧气供应
· 激活胎儿自身的免疫系统
· 通过表观遗传机制(如DNA甲基化、microRNA调控)“标记”胎儿基因,使其在出生后长期处于高敏状态
▸ 科学证据有多强?
动物实验:
给怀孕小鼠注射模拟病毒的物质,其后代会出现社交退缩、重复行为、注意力缺陷——酷似人类ASD和ADHD。
人群研究:
1. 孕期母体IL-6水平升高,与孩子日后患自闭症、多动症、精神分裂症的风险显著相关
2. 母亲患有哮喘+极度肥胖,女婴患自闭症的风险可增加近17倍
3. 孕期C反应蛋白(CRP,炎症标志物)水平高,孩子10岁时被诊断为ADHD的几率上升40%
这些发现指向一个核心机制:母体的炎症信号“编程”了胎儿的免疫系统和大脑,为其一生埋下神经发育脆弱性的种子。
这解释了为何许多神经发育障碍(NDDs)患者具有家族聚集性——并非单纯遗传“精神病基因”,而是遗传了对免疫失调的易感性。
四、PANS——神经炎症“急先锋”:从慢性波动到急性爆发
如果说自闭症、多动症等是“慢性神经炎症”的表现,那么儿童急性神经精神综合征(PANS)则是其“急性暴发”形式。
▸ PANS是什么?家长如何识别?
PANS是一种突然发作(通常在数小时至数天内)的综合征,表现为:
·强迫症状:如反复洗手、检查门窗、害怕污染
·严重进食障碍:拒绝进食,担心食物有毒、噎住或“不干净”
·同时伴随至少两种以下症状:
1. 极度焦虑、情绪失控、易怒、攻击行为
2. 行为退化(如婴儿式说话、粘人、尿床)
3. 注意力涣散、记忆力下降、学业骤降
4. 运动协调障碍、字迹变差、感觉异常
5. 睡眠紊乱(失眠或嗜睡)、噩梦
6. 尿频、遗尿、瞳孔散大、心跳过快等自主神经症状
很多PANS患儿在发病前有感染史(如链球菌咽炎、流感、新冠),但并非所有病例都能找到明确病原体,因此,PANS的诊断不依赖特定感染,而强调“急性发作+多系统症状”。
▸ PANS与免疫有何关系?
研究发现,PANS患儿普遍存在:
·血清和脑脊液中炎症因子升高(如IL-17、TNF-α、IL-1β)
·针对基底神经节(大脑控制运动、习惯、情绪的区域)的自身抗体
·补体系统激活(免疫清除机制过度活跃,产生C4a等炎症介质)
·低水平自身免疫证据(如抗核抗体阳性、甲状腺抗体升高、乳糜泻筛查阳性)
·家族中自身免疫病高发(如多发性硬化、类风湿关节炎、红斑狼疮)
特别值得注意的是,约22%-71%的PANS患儿本身就有ADHD、ASD等神经发育障碍背景,这提示:PANS并非孤立疾病,而可能是已有神经发育脆弱性的孩子,在感染或应激触发下,免疫系统“过激反应”导致的症状急性恶化。
科学家提出“双重打击”模型:
第一次打击(孕期MIA或遗传易感)→ 大脑发育基础薄弱
第二次打击(儿童期感染/应激)→ 免疫系统失控,攻击神经回路 →PANS急性发作
五、跨越诊断界限:一个共享的“免疫—神经炎症”谱系
通常,医生按症状将孩子分门别类:自闭症、多动症、强迫症等等……但新研究证据表明,这些障碍在免疫机制上高度重叠,综述通过系统分析发现,各类障碍在以下六个维度上存在共性:
1. 遗传免疫相关改变
多个调控免疫反应与突触形成的基因(如SHANK3、NLRC4、SYNGAP1、PPM1D)在ASD、ADHD、PANS中均被发现存在变异,这些基因如同“双面开关”,既影响免疫细胞功能,又调控神经连接。
2. 家族自身免疫病史
几乎所有NDDs和PANS患者的家庭中,自身免疫病(如甲状腺炎、1型糖尿病、银屑病)的患病率都显著高于普通人群,PANS尤为突出——70%有家族史,20%的母亲患有严重自身免疫病。
3. 母体免疫激活(MIA)
孕期感染、炎症或自身抗体,是ASD、ADHD、精神分裂症的共同风险因素,虽然PANS尚无直接证据,但其相关基因在胎盘和脑血管中表达,暗示MIA可能奠定易感基础。
4. 炎症生物标志物
患者血清或脑脊液中普遍存在促炎因子(IL-6、TNF-α等)升高,且水平常与症状严重程度相关,PANS患者还表现出独特的代谢谱(如甘氨酸、谷氨酰胺异常),反映神经炎症与氧化应激。
5. 小胶质细胞失调
尸检和影像学研究证实,ASD、精神分裂症患者大脑中存在持续性小胶质细胞激活,动物模型显示,PANS相关的Th17/IL-17通路可直接激活小胶质细胞,破坏突触。
6. 血脑屏障功能障碍
虽然证据强弱不一,但ADHD、ASD、PANS均提示血脑屏障可能存在“漏洞”,使外周炎症因子或自身抗体得以进入中枢神经系统,引发“低级别神经炎症”。
因此,这些障碍不是彼此割裂的疾病,而是一个“免疫-神经炎症”谱系的不同表现,未来的精神疾病分类或许不再以症状为主,而转向基于生物学机制的“维度模型”——正如美国国立精神卫生研究所(NIMH)倡导的“研究领域标准”(RDoC)。
六、治疗新思路:从“压制症状”到“调节免疫”
目前,NDDs和PANS的主流治疗仍以行为干预和药物(如兴奋剂、抗精神病药)为主,但效果有限,且部分患者对药物反应不佳,甚至出现副作用,全球多项研究提示:对于存在免疫炎症证据的亚群,免疫调节可能成为关键突破口。
▸ 已有探索:
·抗生素/抗感染治疗:针对链球菌感染相关的PANDAS(PANS的一个亚型),青霉素等可预防复发
·静脉注射免疫球蛋白(IVIG):通过调节抗体和免疫细胞,已在部分PANS和自闭症患儿中显示疗效,改善强迫、焦虑和认知功能
·皮质类固醇激素:如甲泼尼龙短期使用可快速抑制炎症,缓解急性症状
·血浆置换(Plasmapheresis):清除循环中的致病性自身抗体,用于重症PANS
·靶向细胞因子药物:如抗IL-6(托珠单抗)、抗TNF-α(英夫利昔单抗)等生物制剂,正在临床试验中
然而,目前缺乏大规模随机对照试验(RCT)验证这些疗法的有效性与安全性,原因在于:
1.患者异质性高:并非所有ADHD或ASD都由免疫驱动
2.缺乏可靠生物标志物:难以精准识别“免疫亚型”
3.血脑屏障限制:许多药物难以进入中枢神经系统
▸ 未来方向:
·开发多模态生物标志物组合(如细胞因子+自身抗体+脑成像+代谢组学)
·根据免疫表型分层治疗(如“高炎症型” vs “免疫缺陷型”)
·在生命早期窗口期进行预防性干预(如优化孕期营养、控制母体炎症、调节肠道菌群)
七、给家长启示:关注“身体健康”,而不是仅仅“特殊教育”
如果你的孩子被诊断为神经发育障碍(NDDs),或出现突发性行为改变,请记住:
1. 这不是你的错,也不是孩子的“不听话”
背后可能有复杂的生物学机制,责备自己或强迫孩子“坚强一点”往往适得其反。
2. 全面体检很重要
建议排查:
·过敏原、食物不耐受
·自身免疫指标(如抗核抗体ANA、甲状腺抗体TPO-Ab)
·炎症标志物(C反应蛋白CRP、血沉ESR)
·维生素D、铁、锌等营养素水平
·肠道健康(如肠道菌群检测、乳糜泻筛查)
3. 记录症状与感染/应激事件的关系
如果每次感冒后抽动加重,或发烧后出现强迫行为,务必详细记录并告知医生,这可能是识别“免疫亚型”的关键线索。
4. 不要盲目尝试“消炎”
阿司匹林、布洛芬等非处方药对神经炎症作用有限,且可能有副作用,应在专业医生(如儿科神经免疫专家)指导下评估免疫干预的必要性。
5. 重视“生命最初1000天”
计划怀孕的女性建议如下:
·管理好慢性病(如哮喘、甲状腺疾病)
·保持健康体重,避免肥胖
·均衡饮食,补充叶酸、Omega-3
·减少压力,保证睡眠
·避免不必要的抗生素和环境毒素暴露
结语:“免疫神经精神病学”时代
长期以来,受身心二元论的影响,人们习惯于将“心理”与“生理”视为彼此分离的领域,然而,当代科学研究正不断打破这一传统界限,大脑并非孤立运作的器官,而是持续与免疫、代谢以及肠道微生态等系统进行复杂的动态的交互,共同构成一个高度整合的身心整体。
神经发育障碍(NNDs)和儿童急性神经精神综合征(PANS)的研究,不仅揭示了免疫炎症的核心作用,更呼吁我们要采用跨学科、多视角来看待儿童神经发育障碍,未来的诊疗,或将从“你是哪种病?”转向“你的免疫-神经网络发生了什么?”
正如该综述所言:“我们需要一场范式转变——承认大脑如同心脏、肝脏一样,也会因炎症而“生病”,并值得同样严谨的医学对待”。
这条路还很长——目前仍缺乏大规模的临床实验,免疫治疗也尚未成为标准方案,但每一步进展,都在为千万家庭带来新的希望!
参考文献:(向上滑动阅览)
向上滑动阅览
1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013.
2. Mullin, A.P.; Gokhale, A.; Moreno–De–Luca, A.; Sanyal, S.; Waddington, J.L.; Faundez, V. Neurodevelopmental Disorders: Mechanisms and Boundary Definitions from Genomes, Interactomes and Proteomes. Transl. Psychiatry 2013, 3, e329. [CrossRef]
3. Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [CrossRef]
4. Mottahedin, A.; Ardalan, M.; Chumak, T.; Riebe, I.; Ek, J.; Mallard, C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front. Cell. Neurosci. 2017, 11, 190. [CrossRef] [PubMed]
5. Martino, D.; Johnson, I.; Leckman, J.F. What Does Immunology Have to Do with Normal Brain Development and the Patho– physiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front. Neurol. 2020, 11, 567407. [CrossRef] [PubMed]
6. Shohat, S.; Amelan, A.; Shifman, S. Convergence and Divergence in the Genetics of Psychiatric Disorders from Pathways to Developmental Stages. Biol. Psychiatry 2021, 89, 32–40. [CrossRef]
7. Smoller, J.W.; Andreassen, O.A.; Edenberg, H.J.; Faraone, S.V.; Glatt, S.J.; Kendler, K.S. Psychiatric Genetics and the Structure of Psychopathology. Mol. Psychiatry 2019, 24, 409–420. [CrossRef] [PubMed]
8. Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano–Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled–Up Primate Brain. J. Comp. Neurol. 2009, 513, 532–541. [CrossRef]
9. Mondelli, V.; Dazzan, P.; Pariante, C.M. Immune Abnormalities Across Psychiatric Disorders: Clinical Relevance; Cambridge University Press: Cambridge, UK, 2015.
10. Pape, K.; Tamouza, R.; Leboyer, M.; Zipp, F. Immunoneuropsychiatry—Novel Perspectives on Brain Disorders. Nat. Rev. Neurol. 2019, 15, 317–328. [CrossRef]
11. Carvalho, A.F.; Solmi, M.; Sanches, M.; Machado, M.O.; Stubbs, B.; Ajnakina, O.; Sherman, C.; Sun, Y.R.; Liu, C.S.; Brunoni, A.R.; et al. Evidence–Based Umbrella Review of 162 Peripheral Biomarkers for Major Mental Disorders. Transl. Psychiatry 2020, 10, 152. [CrossRef]
12. Goldsmith, D.R.; Bekhbat, M.; Mehta, N.D.; Felger, J.C. Inflammation–Related Functional and Structural Dysconnectivity as a Pathway to Psychopathology. Biol. Psychiatry 2023, 93, 405–418. [CrossRef]
13. Merzon, E.; Israel, A.; Ashkenazi, S.; Rotem, A.; Schneider, T.; Faraone, S.V.; Biederman, J.; Green, I.; Golan–Cohen, A.; Vinker, S.; et al. Attention–Deficit/Hyperactivity Disorder Is Associated with Increased Rates of Childhood Infectious Diseases: A Population–Based Case–Control Study. J. Am. Acad. Child Adolesc. Psychiatry 2023, 62, 253–260.e1. [CrossRef]
14. Lydholm, C.N.; Köhler–Forsberg, O.; Nordentoft, M.; Yolken, R.H.; Mortensen, P.B.; Petersen, L.; Benros, M.E. Parental Infections before, during, and after Pregnancy as Risk Factors for Mental Disorders in Childhood and Adolescence: A Nationwide Danish Study. Biol. Psychiatry 2019, 85, 317–325. [CrossRef]
15. Black, M.M.; Walker, S.P.; Fernald, L.C.H.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Shiffman, J.; et al. Early Childhood Development Coming of Age: Science through the Life Course. Lancet 2017, 389, 77–90. [CrossRef]
16. Tioleco, N.; Silberman, A.E.; Stratigos, K.; Banerjee–Basu, S.; Spann, M.N.; Whitaker, A.H.; Turner, J.B. Prenatal Maternal Infection and Risk for Autism in Offspring: A Meta–Analysis. Autism Res. 2021, 14, 1296–1316. [CrossRef] [PubMed]
17. Walle, K.M.; Askeland, R.B.; Gustavson, K.; Mjaaland, S.; Ystrom, E.; Lipkin, W.I.; Magnus, P.; Stoltenberg, C.; Susser, E.; Bresnahan, M.; et al. Risk of Attention–Deficit Hyperactivity Disorder in Offspring of Mothers with Infections during Pregnancy. JCPP Adv. 2022, 2, e12070. [CrossRef]
18. Brown, A.S.; Derkits, E.J. Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies. Am. J. Psychiatry 2010, 167, 261–280. [CrossRef]
19. Jones, H.F.; Han, V.X.; Patel, S.; Gloss, B.S.; Soler, N.; Ho, A.; Sharma, S.; Kothur, K.; Nosadini, M.; Wienholt, L.; et al. Maternal autoimmunity and inflammation are associated with childhood tics and obsessive–compulsive disorder: Transcriptomic data show common enriched innate immune pathways. Brain Behav. Immun. 2021, 94, 308–317. [CrossRef]
20. Sotgiu, S.; Manca, S.; Gagliano, A.; Minutolo, A.; Melis, M.C.; Pisuttu, G.; Scoppola, C.; Bolognesi, E.; Clerici, M.; Guerini, F.R.; et al. Immune Regulation of Neurodevelopment at the Mother–Foetus Interface: The Case of Autism. Clin. Transl. Immunol. 2020, 9, e1211. [CrossRef] [PubMed]
21. Choudhury, Z.; Lennox, B. Maternal Immune Activation and Schizophrenia—Evidence for an Immune Priming Disorder. Front. Psychiatry 2021, 12, 585742. [CrossRef] [PubMed]
22. Gilmore, J.H.; Jarskog, L.F. Exposure to infection and brain development: Cytokines in the pathogenesis of schizophrenia. Schizophr. Res. 1997, 24, 365–367. [CrossRef]
23. Estes, M.L.; McAllister, A.K. Maternal Immune Activation: Implications for Neuropsychiatric Disorders. Science 2016, 353, 772–777. [CrossRef]
24. Weber–Stadlbauer, U. Epigenetic and Transgenerational Mechanisms in Infection–Mediated Neurodevelopmental Disorders. Transl. Psychiatry 2017, 7, e1113. [CrossRef]
25. Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A Clinical Approach to Diagnosis of Autoimmune Encephalitis. Lancet Neurol. 2016, 15, 391–404. [CrossRef] [PubMed] [PubMed Central]
26. Dalmau, J.; Graus, F. Antibody–Mediated Encephalitis. N. Engl. J. Med. 2018, 378, 840–851. [CrossRef]
27. Cellucci, T.; Van Mater, H.; Graus, F.; Muscal, E.; Gallentine, W.; Klein–Gitelman, M.S.; Benseler, S.M.; Frankovich, J.; Gorman, M.P.; Van Haren, K.; et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol. Neuroimmunol. Neuroinflammation 2020, 7, e663, Erratum in Neurol Neuroimmunol. Neuroinflamm. 2020, 7, e730. [CrossRef] [PubMed] [PubMed Central]
28. Armangue, T.; Spatola, M.; Vlagea, A.; Mattozzi, S.; Cárceles–Cordon, M.; Martinez–Heras, E.; Llufriu, S.; Muchart, J.; Erro, M.E.; Abraira, L.; et al. Frequency, Symptoms, Risk Factors, and Outcomes of Autoimmune Encephalitis after Herpes Simplex Encephalitis: A Prospective Observational Study and Retrospective Analysis. Lancet Neurol. 2018, 17, 760–772. [CrossRef]
29. Uy, C.E.; Binks, S.; Irani, S.R. Autoimmune Encephalitis: Clinical Spectrum and Management. Pract. Neurol. 2021, 21, 412–423. [CrossRef] [PubMed]
30. Bien, C.G.; Vincent, A.; Barnett, M.H.; Becker, A.J.; Blümcke, I.; Graus, F.; Jellinger, K.A.; Reuss, D.E.; Ribalta, T.; Schlegel, J.; et al. Immunopathology of Autoantibody–Associated Encephalitides: Clues for Pathogenesis. Brain 2012, 135, 1622–1638. [CrossRef]
31. Ehrenreich, H. Autoantibodies against the N–Methyl–d–Aspartate Receptor Subunit NR1: Untangling Apparent Inconsistencies for Clinical Practice. Front. Immunol. 2017, 8, 181. [CrossRef]
32. Makrides, V.; Dolgodilina, E.; Virgintino, D. Blood–Brain Barrier Transporters and Neuroinflammation: Partners in Neuro– protection and in Pathology. In The Blood Brain Barrier and Inflammation; Springer: Cham, Switzerland, 2017; pp. 103–151. [CrossRef]
33. Dileepan, T.; Smith, E.D.; Knowland, D.; Hsu, M.; Platt, M.; Bittner–Eddy, P.; Cohen, B.; Southern, P.; Latimer, E.; Harley, E.; et al. Group A Streptococcus Intranasal Infection Promotes CNS Infiltration by Streptococcal–Specific Th17 Cells. J. Clin. Investig. 2016, 126, 303–317. [CrossRef]
34. Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional Morphology of the Blood–Brain Barrier in Health and Disease. Acta Neuropathol. 2018, 135, 311–336. [CrossRef]
35. Platt, M.P.; Agalliu, D.; Cutforth, T. Hello from the Other Side: How Autoantibodies Circumvent the Blood–Brain Barrier in Autoimmune Encephalitis. Front. Immunol. 2017, 8, 442. [CrossRef]
36. Paolicelli, R.C.; Ferretti, M.T. Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Front. Synaptic Neurosci. 2017, 9, 9. [CrossRef] [PubMed]
37. Mehl, L.C.; Manjally, A.V.; Bouadi, O.; Gibson, E.M.; Tay, T.L. Microglia in Brain Development and Regeneration. Development 2022, 149, dev200425. [CrossRef] [PubMed]
38. Komada, M.; Nishimura, Y. Epigenetics and Neuroinflammation Associated with Neurodevelopmental Disorders: A Microglial Perspective. Front. Cell Dev. Biol. 2022, 10, 852752. [CrossRef] [PubMed]
39. Gagliano, A.; Carta, A.; Tanca, M.G.; Sotgiu, S. Pediatric Acute–Onset Neuropsychiatric Syndrome: Current Perspectives. Neuropsychiatr. Dis. Treat. 2023, 19, 1221–1250. [CrossRef]
40. Kreutzberg, G.W. Microglia: A Sensor for Pathological Events in the CNS. Trends Neurosci. 1996, 19, 312–318. [CrossRef]
41. Chakraborty, S.; Kaushik, D.K.; Gupta, M.; Basu, A. Inflammasome Signaling at the Heart of Central Nervous System Pathology.
J. Neurosci. Res. 2010, 88, 1615–1631. [CrossRef]
42. Singhal, G.; Jaehne, E.J.; Corrigan, F.; Toben, C.; Baune, B.T. Inflammasomes in Neuroinflammation and Changes in Brain Function: A Focused Review. Front. Neurosci. 2014, 8, 315. [CrossRef]
43. Heneka, M.T.; McManus, R.M.; Latz, E. Inflammasome Signalling in Brain Function and Neurodegenerative Disease. Nat. Rev. Neurosci. 2018, 19, 610–621. [CrossRef]
44. Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 Polarization and Metabolic States. Br. J. Pharmacol. 2016, 173, 649–665. [CrossRef]
45. Prinz, M.; Jung, S.; Priller, J. Microglia Biology: One Century of Evolving Concepts. Cell 2019, 179, 292–311. [CrossRef] [PubMed]
46. Stratoulias, V.; Venero, J.L.; Tremblay, M.È.; Joseph, B. Microglial Subtypes: Diversity within the Microglial Community. EMBO J. 2019, 38, e101997. [CrossRef]
47. Thion, M.S.; Garel, S. Microglial Ontogeny, Diversity and Neurodevelopmental Functions. Curr. Opin. Genet. Dev. 2020, 65, 186–194. [CrossRef] [PubMed]
48. Glatt, S.J.; Faraone, S.V.; Tsuang, M.T. Is Schizophrenia a Neurodevelopmental Disorder? In Schizophrenia; Oxford University Press: Oxford, UK, 2019. [CrossRef]
49. Burchi, E.; Pallanti, S. Diagnostic Issues in Early–Onset Obsessive–Compulsive Disorder and Their Treatment Implications. Curr. Neuropharmacol. 2019, 17, 672–680. [CrossRef]
50. Gagliano, A.; Galati, C.; Ingrassia, M.; Ciuffo, M.; Alquino, M.A.; Tanca, M.G.; Carucci, S.; Zuddas, A.; Grossi, E. Pediatric Acute–Onset Neuropsychiatric Syndrome: A Data Mining Approach to a Very Specific Constellation of Clinical Variables. J. Child Adolesc. Psychopharmacol. 2020, 30, 495–511. [CrossRef]
51. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA–ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [CrossRef]
52. Buske–Kirschbaum, A.; Schmitt, J.; Plessow, F.; Romanos, M.; Weidinger, S.; Roessner, V. Psychoendocrine and Psychoneu– roimmunological Mechanisms in the Comorbidity of Atopic Eczema and ADHD. Psychoneuroendocrinology 2013, 38, 12–23. [CrossRef]
53. Hegvik, T.A.; Chen, Q.; Kuja–Halkola, R.; Klungsøyr, K.; Butwicka, A.; Lichtenstein, P.; Almqvist, C.; Faraone, S.V.; Haavik, J.; Larsson, H. Familial co–aggregation of attention–deficit/hyperactivity disorder and autoimmune diseases: A cohort study based on Swedish population–wide registers. Int. J. Epidemiol. 2022, 51, 898–909. [CrossRef]
54. Liao, T.C.; Lien, Y.T.; Wang, S.; Huang, S.L.; Chen, C.Y. Comorbidity of atopic disorders with autism spectrum disorder and attention deficit/hyperactivity disorder. J. Pediatr. 2016, 171, 248–255. [CrossRef] [PubMed]
55. Lin, Y.T.; Chen, Y.C.; Gau, S.S.; Yeh, T.H.; Fan, H.Y.; Hwang, Y.Y.; Lee, Y.L. Associations between allergic diseases and attention deficit hyperactivity/oppositional defiant disorders in children. Pediatr. Res. 2016, 80, 480–485. [CrossRef]
56. Fasmer, O.B.; Halmøy, A.; Eagan, T.M.; Oedegaard, K.J.; Haavik, J. Adult attention deficit hyperactivity disorder is associated with asthma. BMC Psychiatry 2011, 11, 128. [CrossRef]
57. Hegvik, T.A.; Instanes, J.T.; Haavik, J.; Klungsøyr, K.; Engeland, A. Associations between attention–deficit/hyperactivity disorder and autoimmune diseases are modified by sex: A population–based cross–sectional study. Eur. Child Adolesc. Psychiatry 2018, 27, 663–675. [CrossRef]
58. Segman, R.H.; Meltzer, A.; Gross–Tsur, V.; Kosov, A.; Frisch, A.; Inbar, E.; Darvasi, A.; Levy, S.; Goltser, T.; Weizman, A.; et al. Preferential transmission of interleukin–1 receptor antagonist alleles in attention deficit hyperactivity disorder. Mol. Psychiatry 2002, 7, 72–74. [CrossRef] [PubMed]
59. Giana, G.; Romano, E.; Porfirio, M.C.; D’Ambrosio, R.; Giovinazzo, S.; Troianiello, M.; Barlocci, E.; Travaglini, D.; Granstrem, O.; Pascale, E.; et al. Detection of auto–antibodies to DAT in the serum: Interactions with DAT genotype and psycho–stimulant therapy for ADHD. J. Neuroimmunol. 2015, 278, 212–222. [CrossRef] [PubMed]
60. Toto, M.; Margari, F.; Simone, M.; Craig, F.; Petruzzelli, M.G.; Tafuri, S.; Margari, L. Antibasal Ganglia Antibodies and Antistrep– tolysin O in Noncomorbid ADHD. J. Atten. Disord. 2015, 19, 935–942. [CrossRef] [PubMed]
61. Instanes, J.T.; Halmøy, A.; Engeland, A.; Haavik, J.; Furu, K.; Klungsøyr, K. Attention–Deficit/Hyperactivity Disorder in Offspring of Mothers With Inflammatory and Immune System Diseases. Biol. Psychiatry 2017, 81, 452–459. [CrossRef]
62. Leffa, D.T.; Torres, I.L.S.; Rohde, L.A. A review on the role of inflammation in attention–deficit/hyperactivity disorder. Neuroim- munomodulation 2019, 25, 328–333. [CrossRef]
63. Zayats, T.; Athanasiu, L.; Sonderby, I.; Djurovic, S.; Westlye, L.T.; Tamnes, C.K.; Fladby, T.; Aase, H.; Zeiner, P.; Reichborn– Kjennerud, T.; et al. Genome–Wide Analysis of Attention Deficit Hyperactivity Disorder in Norway. PLoS ONE 2015, 10, e0122501. [CrossRef]
64. Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos–Quiroga, J.A.; Rohde, L.A.; Sonuga–Barke, E.J.; Tannock, R.; Franke, B. Attention–Deficit/Hyperactivity Disorder. Nat. Rev. Dis. Primers 2015, 1, 15020. [CrossRef]
65. Li, D.J.; Tsai, C.S.; Hsiao, R.C.; Chen, Y.L.; Yen, C.F. Associations between allergic and autoimmune diseases with autism spectrum disorder and attention–deficit/hyperactivity disorder within families: A population–based cohort study. Int. J. Environ. Res. Public Health 2022, 19, 4503. [CrossRef]
66. Dunn, G.; Nigg, J.; Sontag–Padilla, L.; Seligman, M. Neuroinflammation as a Risk Factor for Attention Deficit Hyperactivity Disorder. Physiol. Behav. 2019, 198, 112–120. [CrossRef]
67. Aguilar–Valles, A.; Rodrigue, B.; Matta–Camacho, E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front. Psychiatry 2020, 11, 852. [CrossRef]
68. Rosenberg, J.B.; Jepsen, J.R.M.; Mohammadzadeh, P.; Sevelsted, A.; Vinding, R.; Sørensen, M.E.; Horner, D.; Aagaard, K.; Fagerlund, B.; Brix, S.; et al. Maternal Inflammation during Pregnancy Is Associated with Risk of ADHD in Children at Age 10. Brain Behav. Immun. 2024, 115, 450–457. [CrossRef]
69. Anand, D.; Colpo, G.D.; Zeni, G.; Zeni, C.P.; Teixeira, A.L. Attention–Deficit/Hyperactivity Disorder and Inflammation: What Does Current Knowledge Tell Us? A Systematic Review. Front. Psychiatry 2017, 8, 228. [CrossRef]
70. Donfrancesco, R.; Nativio, P.; Di Benedetto, A.; Villa, M.P.; Andriola, E.; Melegari, M.G.; Cipriano, E.; Di Trani, M. Anti–Yo Antibodies in Children with ADHD: First Results about Serum Cytokines. J. Atten. Disord. 2020, 24, 1497–1502. [CrossRef] [PubMed]
71. Oades, R.D.; Dauvermann, M.R.; Schimmelmann, B.G.; Schwarz, M.J.; Myint, A.M. Attention–Deficit Hyperactivity Disorder (ADHD) and Glial Integrity: S100B, Cytokines and Kynurenine Metabolism—Effects of Medication. Behav. Brain Funct. 2010, 6, 29. [CrossRef] [PubMed]
72. Corona, J.C. Role of Oxidative Stress and Neuroinflammation in Attention–Deficit/Hyperactivity Disorder. Antioxidants 2020, 9, 1039. [CrossRef] [PubMed]
73. Vázquez–González, D.; Carreón–Trujillo, S.; Alvarez–Arellano, L.; Abarca–Merlin, D.M.; Domínguez–López, P.; Salazar–García, M.; Corona, J.C. A Potential Role for Neuroinflammation in ADHD. In Neuroinflammation, Gut–Brain Axis and Immunity in Neuropsychiatric Disorders; Springer: Singapore, 2023; pp. 327–356. [CrossRef]
74. Lai, M.–C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of Co–Occurring Mental Health Diagnoses in the Autism Population: A Systematic Review and Meta–Analysis. Lancet Psychiatry 2019, 6, 819–829. [CrossRef]
75. Genovese, A.; Butler, M.G. The Autism Spectrum: Behavioral, Psychiatric and Genetic Associations. Genes 2023, 14, 677. [CrossRef]
76. Wiznitzer, M. Autism and Tuberous Sclerosis. J. Child Neurol. 2004, 19, 675–679. [CrossRef] [PubMed]
77. Bergbaum, A.; Ogilvie, C.M. Autism and Chromosome Abnormalities—A Review. Clin. Anat. 2016, 29, 620–627. [CrossRef]
78. Keski–Rahkonen, A.; Ruusunen, A. Avoidant–Restrictive Food Intake Disorder and Autism: Epidemiology, Etiology, Complica– tions, Treatment, and Outcome. Curr. Opin. Psychiatry 2023, 36, 438–442. [CrossRef]
79. Madra, M.; Ringel, R.; Margolis, K.G. Gastrointestinal Issues and Autism Spectrum Disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 501–513. [CrossRef]
80. Capal, J.K.; Jeste, S.S. Autism and Epilepsy. Pediatr. Clin. N. Am. 2024, 71, 241–252. [CrossRef]
81. Johnson, K.P.; Zarrinnegar, P. Autism Spectrum Disorder and Sleep. Child Adolesc. Psychiatr. Clin. N. Am. 2021, 30, 195–208. [CrossRef] [PubMed]
82. Voineagu, I.; Wang, X.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H.
Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology. Nature 2011, 474, 380–384. [CrossRef]
83. Gładysz, D.; Krzywdzi ´nska, A.; Hozyasz, K.K. Immune Abnormalities in Autism Spectrum Disorder—Could They Hold Promise for Causative Treatment? Mol. Neurobiol. 2018, 55, 6387–6435. [CrossRef]
84. Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate Immune Dysfunction and Neuroinflammation in Autism Spectrum Disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [CrossRef] [PubMed]
85. Usui, N.; Kobayashi, H.; Shimada, S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int. J. Mol. Sci. 2023, 24, 5487. [CrossRef]
86. Villarreal, V.R.; Katusic, M.Z.; Myers, S.M.; Weaver, A.L.; Nocton, J.J.; Voigt, R.G. Risk of Autoimmune Disease in Research– Identified Cases of Autism Spectrum Disorder: A Longitudinal, Population–Based Birth Cohort Study. J. Dev. Behav. Pediatr. 2024, 45, E46–E53. [CrossRef]
87. Zerbo, O.; Leong, A.; Barcellos, L.; Bernal, P.; Fireman, B.; Croen, L.A. Immune Mediated Conditions in Autism Spectrum Disorders. Brain Behav. Immun. 2015, 46, 232–236. [CrossRef] [PubMed]
88. Al–Haddad, B.J.S.; Jacobsson, B.; Chabra, S.; Modzelewska, D.; Olson, E.M.; Bernier, R.; Enquobahrie, D.A.; Hagberg, H.; Östling, S.; Rajagopal, L.; et al. Long–term risk of neuropsychiatric disease after exposure to infection in utero. JAMA Psychiatry 2019, 76, 594–602. [CrossRef]
89. Croen, L.A.; Ames, J.L.; Qian, Y.; Alexeeff, S.; Ashwood, P.; Gunderson, E.P.; Wu, Y.W.; Boghossian, A.S.; Yolken, R.; Van de Water, J.; et al. Inflammatory conditions during pregnancy and risk of autism and other neurodevelopmental disorders. Biol. Psychiatry Glob. Open Sci. 2024, 4, 39–50. [CrossRef]
90. Brown, A.S.; Surcel, H.M.; Hinkka–Yli–Salomäki, S.; Cheslack–Postava, K.; Bao, Y.; Sourander, A. Maternal Thyroid Autoantibody and Elevated Risk of Autism in a National Birth Cohort. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 57, 86–92. [CrossRef]
91. Nielsen, T.C.; Nassar, N.; Shand, A.W.; Jones, H.F.; Han, V.X.; Patel, S.; Guastella, A.J.; Dale, R.C.; Lain, S.J. Association of Maternal Autoimmune Disease and Early Childhood Infections with Offspring Autism Spectrum Disorder: A Population–Based Cohort Study. Autism Res. 2022, 15, 2371–2380. [CrossRef] [PubMed]
92. Jones, K.L.; Croen, L.A.; Yoshida, C.K.; Heuer, L.S.; Hansen, R.L.; Zerbo, O.; DeLorenze, G.N.; Kharrazi, M.; Yolken, R.; Ashwood, P.; et al. Autism with Intellectual Disability Is Associated with Increased Levels of Maternal Cytokines and Chemokines during Gestation. Mol. Psychiatry 2017, 22, 273–279. [CrossRef]
93. Abdallah, M.W.; Larsen, N.; Grove, J.; Nørgaard–Pedersen, B.; Thorsen, P.; Mortensen, E.L.; Hougaard, D.M. Amniotic fluid chemokines and autism spectrum disorders: An exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav. Immun. 2012, 26, 170–176. [CrossRef] [PubMed]
94. Rudolph, M.D.; Graham, A.M.; Feczko, E.; Miranda–Dominguez, O.; Rasmussen, J.M.; Nardos, R.; Entringer, S.; Wadhwa, P.D.; Buss, C.; Fair, D.A. Maternal IL–6 during Pregnancy Can Be Estimated from Newborn Brain Connectivity and Predicts Future Working Memory in Offspring. Nat. Neurosci. 2018, 21, 765–772. [CrossRef]
95. Graham, A.M.; Rasmussen, J.M.; Rudolph, M.D.; Heim, C.M.; Gilmore, J.H.; Styner, M.; Potkin, S.G.; Entringer, S.; Wadhwa, P.D.; Fair, D.A.; et al. Maternal Systemic Interleukin–6 During Pregnancy Is Associated with Newborn Amygdala Phenotypes and Subsequent Behavior at 2–Years–of–Age. Biol. Psychiatry 2018, 83, 109–119. [CrossRef]
96. Abdallah, M.W.; Larsen, N.; Grove, J.; Bonefeld–Jørgensen, E.C.; Nørgaard–Pedersen, B.; Hougaard, D.M.; Mortensen, E.L. Neonatal Chemokine Levels and Risk of Autism Spectrum Disorders: Findings from a Danish Historic Birth Cohort Follow–up Study. Cytokine 2013, 61, 370–376. [CrossRef] [PubMed]
97. Krakowiak, P.; Goines, P.E.; Tancredi, D.J.; Ashwood, P.; Hansen, R.L.; Hertz–Picciotto, I.; Van de Water, J. Neonatal Cytokine Profiles Associated with Autism Spectrum Disorder. Biol. Psychiatry 2017, 81, 442–451. [CrossRef] [PubMed]
98. Heuer, L.S.; Croen, L.A.; Jones, K.L.; Yoshida, C.K.; Hansen, R.L.; Yolken, R.; Zerbo, O.; DeLorenze, G.; Kharrazi, M.; Ashwood, P.; et al. An Exploratory Examination of Neonatal Cytokines and Chemokines as Predictors of Autism Risk: The Early Markers for Autism Study. Biol. Psychiatry 2019, 86, 255–264. [CrossRef] [PubMed]
99. Oskvig, D.B.; Elkahloun, A.G.; Johnson, K.R.; Phillips, T.M.; Herkenham, M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav. Immun. 2012, 26, 623–634. [CrossRef]
100. O’Loughlin, E.; Pakan, J.M.P.; Yilmazer–Hanke, D.; McDermott, K.W. Acute in Utero Exposure to Lipopolysaccharide Induces In– flammation in the Pre– and Postnatal Brain and Alters the Glial Cytoarchitecture in the Developing Amygdala. J. Neuroinflammation 2017, 14, 212. [CrossRef]
101. Cie´slik, M.; Ga˛ssowska–Dobrowolska, M.; J˛e´sko, H.; Czapski, G.A.; Wilkaniec, A.; Zawadzka, A.; Dominiak, A.; Polowy, R.; Filipkowski, R.K.; Boguszewski, P.M.; et al. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int. J. Mol. Sci. 2020, 21, 4097. [CrossRef]
102. Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal Immune Activation and Neuroinflammation in Human Neurodevelopmental Disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [CrossRef]
103. Xiong, Y.; Chen, J.; Li, Y. Microglia and Astrocytes Underlie Neuroinflammation and Synaptic Susceptibility in Autism Spectrum Disorder. Front. Neurosci. 2023, 17, 1125428. [CrossRef]
104. Lampiasi, N.; Bonaventura, R.; Deidda, I.; Zito, F.; Russo, R. Inflammation and the Potential Implication of Macrophage–Microglia Polarization in Human ASD: An Overview. Int. J. Mol. Sci. 2023, 24, 2703. [CrossRef]
105. Rodriguez, J.I.; Kern, J.K. Evidence of Microglial Activation in Autism and Its Possible Role in Brain Underconnectivity. Neuron Glia Biol. 2011, 7, 205–213. [CrossRef]
106. Hu, C.; Li, H.; Li, J.; Luo, X.; Hao, Y. Microglia: Synaptic Modulator in Autism Spectrum Disorder. Front. Psychiatry 2022, 13, 958661. [CrossRef]
107. Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Ann. Neurol. 2005, 57, 67–81. [CrossRef] [PubMed]
108. Than, U.T.T.; Nguyen, L.T.; Nguyen, P.H.; Nguyen, X.H.; Trinh, D.P.; Hoang, D.H.; Nguyen, P.A.T.; Dang, V.D. Inflammatory Mediators Drive Neuroinflammation in Autism Spectrum Disorder and Cerebral Palsy. Sci. Rep. 2023, 13, 22587. [CrossRef]
109. De Giacomo, A.; Gargano, C.D.; Simone, M.; Petruzzelli, M.G.; Pedaci, C.; Giambersio, D.; Margari, L.; Ruggieri, M. B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder. Front. Neurosci. 2021, 15, 732611. [CrossRef]
110. Geller, H.; Williams, K.A. 6.34 Comparison of Primary Humoral Immunodeficiencies in Autism Spectrum Disorder (ASD) and Other Pediatric–Onset Psychiatric Disorders. J. Am. Acad. Child Adolesc. Psychiatry 2021, 60, S169. [CrossRef]
111. Bjørklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune Dysfunction and Neuroinflam– mation in Autism Spectrum Disorder. Acta Neurobiol. Exp. 2016, 76, 257–268. [CrossRef] [PubMed]
112. Robertson, M.M.; Eapen, V.; Singer, H.S.; Martino, D.; Scharf, J.M.; Paschou, P.; Roessner, V.; Woods, D.W.; Hariz, M.; Mathews, C.A.; et al. Gilles de la Tourette Syndrome. Nat. Rev. Dis. Primers 2017, 3, 16097. [CrossRef] [PubMed]
113. Knight, T.; Steeves, T.; Day, L.; Lowerison, M.; Jette, N.; Pringsheim, T. Prevalence of Tic Disorders: A Systematic Review and Meta–Analysis. Pediatr. Neurol. 2012, 47, 77–90. [CrossRef]
114. Jellinger, K.A. Neuropathology and Pathogenesis of Extrapyramidal Movement Disorders: A Critical Update. II. Hyperkinetic Disorders. J. Neural Transm. 2019, 126, 997–1027. [CrossRef]
115. Swedo, S.E.; Leonard, H.L.; Garvey, M.; Mittleman, B.; Allen, A.J.; Perlmutter, S.; Lougee, L.; Dow, S.; Zamkoff, J.; Dubbert, B.K. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections: Clinical Description of the First 50 Cases. In Obsessive-Compulsive Disorder and Tourette’s Syndrome; Routledge: Oxfordshire, UK, 1998; Volume 155, pp. 264–271. [CrossRef]
116. Mataix–Cols, D.; Frans, E.; Pérez–Vigil, A.; Kuja–Halkola, R.; Gromark, C.; Isomura, K.; Fernández de la Cruz, L.; Serlachius, E.; Leckman, J.F.; Crowley, J.J.; et al. A Total–Population Multigenerational Family Clustering Study of Autoimmune Diseases in Obsessive–Compulsive Disorder and Tourette’s/Chronic Tic Disorders. Mol. Psychiatry 2018, 23, 1652–1658. [CrossRef]
117. Keszler, G.; Kruk, E.; Kenezloi, E.; Tarnok, Z.; Sasvari–Szekely, M.; Nemoda, Z. Association of the Tumor Necrosis Factor –308 A/G Promoter Polymorphism with Tourette Syndrome. Int. J. Immunogenet. 2014, 41, 493–498. [CrossRef]
118. Tylee, D.S.; Sun, J.; Hess, J.L.; Tahir, M.A.; Sharma, E.; Malik, R.; Worrall, B.B.; Levine, A.J.; Martinson, J.J.; Nejentsev, S.; et al. Genetic Correlations among Psychiatric and Immune–related Phenotypes Based on Genome–wide Association Data. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018, 177, 641–657. [CrossRef]
119. Tsetsos, F.; Yu, D.; Sul, J.H.; Huang, A.Y.; Illmann, C.; Osiecki, L.; Darrow, S.M.; Hirschtritt, M.E.; Greenberg, E.; Muller–Vahl, K.R.; et al. Synaptic Processes and Immune–Related Pathways Implicated in Tourette Syndrome. Transl. Psychiatry 2021, 11, 56. [CrossRef]
120. Elamin, I.; Edwards, M.J.; Martino, D. Immune Dysfunction in Tourette Syndrome. Behav. Neurol. 2013, 27, 23–32. [CrossRef]
121. Martino, D.; Zis, P.; Buttiglione, M. The Role of Immune Mechanisms in Tourette Syndrome. Brain Res. 2015, 1617, 126–143. [CrossRef] [PubMed]
122. Leckman, J.F.; Katsovich, L.; Kawikova, I.; Lin, H.; Zhang, H.; Krönig, H.; Morshed, S.; Parveen, S.; Grantz, H.; Lombroso, P.J.; et al. Increased Serum Levels of Interleukin–12 and Tumor Necrosis Factor–Alpha in Tourette’s Syndrome. Biol. Psychiatry 2005, 57, 667–673. [CrossRef] [PubMed]
123. Chi, S.; Mok, Y.E.; Kang, J.; Gim, J.A.; Han, C.; Lee, M.S. Cytokine Levels Reflect Tic Symptoms More Prominently during Mild Phases. BMC Neurosci. 2023, 24, 14. [CrossRef]
124. Tao, Y.; Xu, P.; Zhu, W.; Chen, Z.; Tao, X.; Liu, J.; Xue, Z.; Zhu, T.; Jiang, P. Changes of Cytokines in Children With Tic Disorder. Front. Neurol. 2022, 12, 800189. [CrossRef]
125. Li, Y.; Wang, X.; Yang, H.; Li, Y.; Gui, J.; Cui, Y. Profiles of Proinflammatory Cytokines and T Cells in Patients With Tourette Syndrome: A Meta–Analysis. Front. Immunol. 2022, 13, 843247. [CrossRef] [PubMed]
126. Weidinger, E.; Krause, D.; Wildenauer, A.; Meyer, S.; Gruber, R.; Schwarz, M.J.; Müller, N. Impaired Activation of the Innate Immune Response to Bacterial Challenge in Tourette Syndrome. World J. Biol. Psychiatry 2014, 15, 453–458. [CrossRef]
127. Kawikova, I.; Leckman, J.F.; Kronig, H.; Katsovich, L.; Bessen, D.E.; Ghebremichael, M.; Bothwell, A.L. Decreased Numbers of Regulatory T Cells Suggest Impaired Immune Tolerance in Children with Tourette Syndrome: A Preliminary Study. Biol. Psychiatry 2007, 61, 273–278. [CrossRef] [PubMed]
128. Dale, R.C.; Merheb, V.; Pillai, S.; Wang, D.; Cantrill, L.; Murphy, T.K.; Ben–Pazi, H.; Varadkar, S.; Aumann, T.D.; Horne, M.K.; et al. Antibodies to Surface Dopamine–2 Receptor in Autoimmune Movement and Psychiatric Disorders. Brain 2012, 135, 3453–3468. [CrossRef]
129. Addabbo, F.; Baglioni, V.; Schrag, A.; Schwarz, M.J.; Dietrich, A.; Hoekstra, P.J.; Martino, D.; Buttiglione, M.; Emtics Collaborative Group. Anti–dopamine D2 Receptor Antibodies in Chronic Tic Disorders. Dev. Med. Child Neurol. 2020, 62, 1205–1212. [CrossRef]
130. Bos–Veneman, N.G.; Olieman, R.; Tobiasova, Z.; Hoekstra, P.J.; Katsovich, L.; Bothwell, A.L.; Leckman, J.F.; Kawikova, I. Altered Immunoglobulin Profiles in Children with Tourette Syndrome. Brain Behav. Immun. 2011, 25, 532–538. [CrossRef]
131. Harris, J. Intellectual Disability: Understanding Its Development, Causes, Classification, Evaluation, and Treatment; Oxford University Press: Oxford, UK, 2006.
132. Brynge, M.; Sjöqvist, H.; Gardner, R.M.; Lee, B.K.; Dalman, C.; Karlsson, H. Maternal Infection during Pregnancy and Likelihood of Autism and Intellectual Disability in Children in Sweden: A Negative Control and Sibling Comparison Cohort Study. Lancet Psychiatry 2022, 9, 782–791. [CrossRef] [PubMed]
133. Rezaeinejad, M.; Riahi, S.M.; Moghadam, K.B.; Tadi, M.J.; Geraili, Z.; Parsa, H.; Marhoommirzabak, E.; Nourollahpour Shiadeh, M.; Khatir, A.A. The Association between Maternal Infection and Intellectual Disability in Children: A Systematic Review and Meta–Analysis. PLoS ONE 2023, 18, e0292226. [CrossRef]
134. Benmakhlouf, Y.; Zian, Z.; Nourouti, N.G.; Barakat, A.; Mechita, M.B. Potential Cytokine Biomarkers in Intellectual Disability. Endocr. Metab. Immune Disord.—Drug Targets 2020, 21, 569–576. [CrossRef]
135. Mekori–Domachevsky, E.; Taler, M.; Shoenfeld, Y.; Gurevich, M.; Sonis, P.; Weisman, O.; Weizman, A.; Gothelf, D. Elevated Proinflammatory Markers in 22q11.2 Deletion Syndrome Are Associated with Psychosis and Cognitive Deficits. J. Clin. Psychiatry 2017, 78, e1219–e1225. [CrossRef]
136. Fan, X.Y.; Shi, G.; Zhao, P. Neonatal Sevoflurane Exposure Impairs Learning and Memory by the Hypermethylation of Hippocam– pal Synaptic Genes. Mol. Neurobiol. 2021, 58, 895–904. [CrossRef] [PubMed]
137. Huang, X.; Hussain, B.; Chang, J. Peripheral Inflammation and Blood–Brain Barrier Disruption: Effects and Mechanisms. CNS Neurosci. Ther. 2021, 27, 36–47. [CrossRef]
138. Zhang, F.; Zhang, J.; Wang, X.; Han, M.; Fei, Y.; Wang, J. Blood–Brain Barrier Disruption in Schizophrenia: Insights, Mechanisms, and Future Directions. Int. J. Mol. Sci. 2025, 26, 873. [CrossRef]
139. Al–Diwani, A.; Handel, A.; Townsend, L.; Pollak, T.; Leite, M.I.; Harrison, P.J.; Lennox, B.R.; Okai, D.; Manohar, S.G.; Irani, S.R. The psychopathology of NMDAR–antibody encephalitis in adults: A systematic review and phenotypic analysis of individual patient data. Lancet Psychiatry 2019, 6, 235–246. [CrossRef] [PubMed]
140. Najjar, S.; Steiner, J.; Najjar, A.; Bechter, K. A clinical approach to new–onset psychosis associated with immune dysregulation: The concept of autoimmune psychosis. J. Neuroinflammation 2018, 15, 40. [CrossRef] [PubMed]
141. McKeon, A.; Dubey, D.; Flanagan, E.; Pittock, S.; Zekeridou, A. Autoimmune psychosis. Lancet Psychiatry 2020, 7, 122. [CrossRef] [PubMed]
142. Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta–analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [CrossRef]
143. Bechter, K.; Reiber, H.; Herzog, S.; Fuchs, D.; Tumani, H.; Maxeiner, H.G. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: Identification of subgroups with immune responses and blood–CSF barrier dysfunction. J. Psychiatr. Res. 2010, 44, 321–330. [CrossRef]
144. Endres, D.; Perlov, E.; Baumgartner, A.; Hottenrott, T.; Dersch, R.; Stich, O.; Tebartz van Elst, L. Immunological findings in psychotic syndromes: A tertiary care hospital’s CSF sample of 180 patients. Front. Hum. Neurosci. 2015, 9, 476. [CrossRef]
145. Upthegrove, R.; Manzanares–Teson, N.; Barnes, N.M. Cytokine function in medication–naive first–episode psychosis: A systematic review and meta–analysis. Schizophr Res. 2014, 155, 101–108. [CrossRef]
146. Nayak, U.; Manikkath, J.; Arora, D.; Mudgal, J. Impact of neuroinflammation on brain glutamate and dopamine signalling in schizophrenia: An update. Metab. Brain Dis. 2025, 40, 119. [CrossRef]
147. Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta–Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [CrossRef]
148. Gallego, J.A.; Blanco, E.A.; Husain–Krautter, S.; Fagen, E.M.; Moreno–Merino, P.; del Ojo–Jiménez, J.A.; Ahmed, A.; Rothstein, T.L.; Lencz, T.; Malhotra, A.K. Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: New data and an updated meta–analysis. Schizophr Res. 2018, 202, 64–71. [CrossRef] [PubMed]
149. Khandaker, G.M.; Pearson, R.M.; Zammit, S.; Lewis, G.; Jones, P.B. Association of serum interleukin 6 and C–reactive protein in childhood with depression and psychosis in young adult life: A population–based longitudinal study. JAMA Psychiatry 2014, 71, 1121–1128. [CrossRef]
150. Metcalf, S.A.; Jones, P.B.; Nordstrom, T.; Timonen, M.; Mäki, P.; Miettunen, J.; Jääskeläinen, E.; Järvelin, M.R.; Stochl, J.; Murray, G.K.; et al. Serum C–reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study. Brain Behav. Immun. 2017, 59, 253–259. [CrossRef]
151. Dunleavy, C.; Elsworthy, R.J.; Upthegrove, R.; Wood, S.J.; Aldred, S. Inflammation in first–episode psychosis: The contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta–analysis. Acta Psychiatr. Scand. 2022, 146, 6–20. [CrossRef] [PubMed]
152. Pollak, T.A.; Lennox, B.R.; Müller, S.; Benros, M.E.; Prüss, H.; Tebartz van Elst, L.; Klein, H.; Steiner, J.; Frodl, T.; Bogerts, B.; et al. Autoimmune psychosis: An international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry 2020, 7, 93–108. [CrossRef]
153. Pollak, T.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.K.; Abbott, N.J. The blood–brain barrier in psychosis. Lancet Psychiatry 2018, 5, 79–92. [CrossRef]
154. Trépanier, M.O.; Hopperton, K.E.; Mizrahi, R.; Mechawar, N.; Bazinet, R.P. Postmortem evidence of cerebral inflammation in schizophrenia: A systematic review. Mol. Psychiatry 2016, 21, 1009–1026. [CrossRef]
155. van Kesteren, C.F.M.G.; Gremmels, H.; de Witte, L.D.; Hol, E.M.; Van Gool, A.R.; Falkai, P.G.; Kahn, R.S.; Sommer, I.E.C. Immune involvement in the pathogenesis of schizophrenia: A meta–analysis on postmortem brain studies. Transl. Psychiatry 2017, 7, e1075. [CrossRef]
156. Kayser, M.S.; Dalmau, J. Anti–NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr. Res. 2016, 176, 36–40. [CrossRef]
157. Subeh, G.K.; Lajber, M.; Patel, T.; Mostafa, J.A. Anti–N–methyl–D–aspartate receptor encephalitis: A detailed review of the different psychiatric presentations and red flags to look for in suspected cases. Cureus 2021, 13, e15188. [CrossRef] [PubMed]
158. Hardy, D. Autoimmune encephalitis in children. Pediatr. Neurol. 2022, 132, 56–66. [CrossRef]
159. Giri, Y.R.; Parrill, A.; Damodar, S.; Fogel, J.; Ayed, N.; Syed, M.; Korie, I.; Ayyanar, S.; Typhair, C.; Hashmi, S. Anti–N–methyl–D– aspartate receptor (NMDAR) encephalitis in children and adolescents: A systematic review and quantitative analysis of reported cases. J. Can. Acad. Child Adolesc. Psychiatry 2021, 30, 236–248. [PubMed]
160. Ahmad, S.A.; Archer, H.A.; Rice, C.M.; Gerhand, S.; Bradley, M.; Wilkins, A. Seronegative limbic encephalitis: Case report, literature review and proposed treatment algorithm. Pract. Neurol. 2011, 11, 355–361. [CrossRef]
161. Shah, K.; Iloh, N.; Tabares, P.; Nnadi, C.; Sharif, Z.; Macaluso, C. Limbic encephalitis and psychosis. Gen. Hosp. Psychiatry 2013, 35, 682.e1–682.e2. [CrossRef]
162. Eaton, W.W.; Byrne, M.; Ewald, H.; Mors, O.; Chen, C.Y.; Agerbo, E.; Mortensen, P.B. Association of schizophrenia and autoimmune diseases: Linkage of Danish national registers. Am. J. Psychiatry 2006, 163, 521–528. [CrossRef] [PubMed]
163. Benros, M.E.; Pedersen, M.G.; Rasmussen, H.; Eaton, W.W.; Nordentoft, M.; Mortensen, P.B. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am. J. Psychiatry 2014, 171, 218–226. [CrossRef] [PubMed]
164. Benros, M.E.; Nielsen, P.R.; Nordentoft, M.; Eaton, W.W.; Dalton, S.O.; Mortensen, P.B. Autoimmune diseases and severe infections as risk factors for schizophrenia: A 30–year population–based register study. Am. J. Psychiatry 2011, 168, 1303–1310. [CrossRef] [PubMed]
165. Yolken, R.H.; Torrey, E.F. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol. Psychiatry 2008, 13, 470–479. [CrossRef]
166. Benros, M.E.; Waltoft, B.L.; Nordentoft, M.; Ostergaard, S.D.; Eaton, W.W.; Krogh, J.; Mortensen, P.B. Autoimmune diseases and severe infections as risk factors for mood disorders: A nationwide study. JAMA Psychiatry 2013, 70, 812–820. [CrossRef]
167. Girgis, R.R.; Ciarleglio, A.; Choo, T.; Haynes, G.; Bathon, J.M.; Cremers, S.; Kantrowitz, J.T.; Lieberman, J.A.; Brown, A.S. A randomized, double–blind, placebo–controlled clinical trial of tocilizumab, an interleukin–6 receptor antibody, for residual symptoms in schizophrenia. Neuropsychopharmacology 2018, 43, 1317–1323. [CrossRef]
168. Ruscio, A.M.; Stein, D.J.; Chiu, W.T.; Kessler, R.C. The epidemiology of obsessive–compulsive disorder in the National Comorbidity Survey Replication. Mol. Psychiatry 2010, 15, 53–63. [CrossRef] [PubMed]
169. Robbins, T.W.; Vaghi, M.M.; Banca, P. Obsessive–compulsive disorder: Puzzles and prospects. Neuron 2019, 102, 27–47. [CrossRef] [PubMed]
170. Frick, L.; Pittenger, C. Microglial dysregulation in OCD, Tourette syndrome, and PANDAS. J. Immunol. Res. 2016, 2016, 8606057. [CrossRef]
171. Gerentes, M.; Pelissolo, A.; Rajagopal, K.; Tamouza, R.; Hamdani, N. Obsessive–compulsive disorder: Autoimmunity and neuroinflammation. Curr. Psychiatry Rep. 2019, 21, 78. [CrossRef]
172. Snider, L.A.; Swedo, S.E. PANDAS: Current status and directions for research. Mol. Psychiatry 2004, 9, 900–907. [CrossRef]
173. Orlovska, S.; Vestergaard, C.H.; Bech, B.H.; Nordentoft, M.; Vestergaard, M.; Benros, M.E. Association of Streptococcal Throat Infection With Mental Disorders: Testing Key Aspects of the PANDAS Hypothesis in a Nationwide Study. JAMA Psychiatry 2017, 74, 740–746. [CrossRef] [PubMed]
174. Xu, J.; Liu, R.J.; Fahey, S.; Frick, L.; Leckman, J.; Vaccarino, F.; Duman, R.S.; Williams, K.; Swedo, S.; Pittenger, C. Antibodies from children with PANDAS bind specifically to striatal cholinergic interneurons and alter their activity. Am. J. Psychiatry 2021, 178, 48–64. [CrossRef]
175. Xu, M.; Kobets, A.; Du, J.C.; Lennington, J.; Li, L.; Banasr, M.; Duman, R.S.; Vaccarino, F.M.; DiLeone, R.J.; Pittenger, C. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc. Natl. Acad. Sci. USA 2015, 112, 893–898. [CrossRef]
176. Zhang, T.; Brander, G.; Isung, J.; Isomura, K.; Sidorchuk, A.; Larsson, H.; Chang, Z.; Mataix–Cols, D.; Fernández de la Cruz, L. Prenatal and early childhood infections and subsequent risk of obsessive–compulsive disorder and tic disorders: A nationwide, sibling–controlled study. Biol. Psychiatry 2023, 93, 1023–1030. [CrossRef]
177. Cainelli, E.; Nosadini, M.; Sartori, S.; Suppiej, A. Neuropsychological and psychopathological profile of anti–NMDAR encephalitis: A possible pathophysiological model for pediatric neuropsychiatric disorders. Arch. Clin. Neuropsychol. 2019, 34, 1309–1319. [CrossRef]
178. Foroughipour, M.; Behdani, F.; Hebrani, P.; Marvast, M.N.; Esmatinia, F.; Akhavanrezayat, A. Frequency of obsessive–compulsive disorder in patients with multiple sclerosis: A cross–sectional study. J. Res. Med. Sci. 2012, 17, 248–253.
179. Wang, L.Y.; Chen, S.F.; Chiang, J.H.; Hsu, C.Y.; Shen, Y.C. Systemic autoimmune diseases are associated with an increased risk of obsessive–compulsive disorder: A nationwide population–based cohort study. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 507–516. [CrossRef] [PubMed]
180. Lüngen, E.M.; Maier, V.; Venhoff, N.; Salzer, U.; Dersch, R.; Berger, B.; Riering, A.N.; Nickel, K.; Fiebich, B.L.; Süß, P.; et al. Systemic lupus erythematosus with isolated psychiatric symptoms and antinuclear antibody detection in the cerebrospinal fluid. Front. Psychiatry 2019, 10, 226. [CrossRef] [PubMed]
181. De Carvalho, J.F.; Ribeiro, F.M. Sjögren syndrome associated with obsessive–compulsive disorder. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11801–11803.
182. Endres, D.; Pollak, T.A.; Bechter, K.; Denzel, D.; Pitsch, K.; Nickel, K.; Runge, K.; Pankratz, B.; Klatzmann, D.; Tamouza, R.; et al. Immunological causes of obsessive–compulsive disorder: Is it time for the concept of an “autoimmune OCD” subtype? Transl Psychiatry 2022, 12, 5. [CrossRef]
183. Pearlman, D.M.; Vora, H.S.; Marquis, B.G.; Najjar, S.; Dudley, L.A. Anti–basal ganglia antibodies in primary obsessive–compulsive disorder: Systematic review and meta–analysis. Br. J. Psychiatry 2014, 205, 8–16. [CrossRef]
184. Gray, S.M.; Bloch, M.H. Systematic review of proinflammatory cytokines in obsessive–compulsive disorder. Curr. Psychiatry Rep. 2012, 14, 220–228. [CrossRef]
185. Tamouza, R.; Krishnamoorthy, R.; Leboyer, M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav. Immun. 2021, 91, 731–739. [CrossRef]
186. Costas, J.; Carrera, N.; Alonso, P.; Gurriarán, X.; Segalàs, C.; Real, E.; López–Solà, C.; Mas, S.; Gassó, P.; Domènech, L.; et al. Exon–focused genome–wide association study of obsessive–compulsive disorder and shared polygenic risk with schizophrenia. Transl. Psychiatry 2016, 6, e768. [CrossRef] [PubMed]
187. Rodriguez, N.; Morer, A.; González–Navarro, E.A.; Gassó, P.; Boloc, D.; Serra–Pagès, C.; Lafuente, A.; Lazaro, L.; Mas, S. Human–leukocyte antigen class II genes in early–onset obsessive–compulsive disorder. World J. Biol. Psychiatry 2019, 20, 352–358. [CrossRef]
188. Noble, J.A. Immunogenetics of type 1 diabetes: A comprehensive review. J. Autoimmun. 2015, 64, 101–112. [CrossRef]
189. Jiang, C.; Ma, X.; Qi, S.; Han, G.; Li, Y.; Liu, Y.; Liu, L. Association between TNF–α–238G/A gene polymorphism and OCD susceptibility: A meta–analysis. Medicine 2018, 97, e9769. [CrossRef]
190. Wang, P.; Zhao, Q.; Xu, T.; Gu, Q.; Liu, Q.; Wang, Y.; Lin, G.N.; Wang, Z. Interaction between PGRN gene and the early trauma on clinical characteristics in patients with obsessive–compulsive disorder. J. Affect. Disord. 2020, 263, 134–140. [CrossRef] [PubMed]
191. Swedo, S.E.; Leckman, J.F.; Rose, N.R. From research subgroup to clinical syndrome: Modifying the PANDAS criteria to describe PANS (Pediatric Acute–Onset Neuropsychiatric Syndrome). Pediatr. Ther. 2012, 2, 1000113. [CrossRef]
192. Chang, K.; Frankovich, J.; Cooperstock, M.; Cunningham, M.W.; Latimer, M.E.; Murphy, T.K.; Pasternack, M.; Thienemann, M.; Williams, K.; Walter, J.; et al. Clinical evaluation of youth with pediatric acute–onset neuropsychiatric syndrome (PANS): Recommendations from the 2013 PANS Consensus Conference. J. Child Adolesc. Psychopharmacol. 2015, 25, 3–13. [CrossRef]
193. Frankovich, J.; Thienemann, M.; Pearlstein, J.; Crable, A.; Brown, K.; Chang, K. Multidisciplinary clinic dedicated to treating youth with pediatric acute–onset neuropsychiatric syndrome: Presenting characteristics of the first 47 consecutive patients. J. Child Adolesc. Psychopharmacol. 2015, 25, 38–47. [CrossRef]
194. Gagliano, A.; Puligheddu, M.; Ronzano, N.; Congiu, P.; Tanca, M.G.; Cursio, I.; Carucci, S.; Sotgiu, S.; Grossi, E.; Zuddas, A. Artificial neural networks analysis of polysomnographic and clinical features in pediatric acute–onset neuropsychiatric syndrome (PANS): From sleep alteration to “Brain Fog”. Nat. Sci. Sleep. 2021, 13, 1209–1224. [CrossRef]
195. Chan, A.; Gao, J.; Houston, M.; Willett, T.; Farhadian, B.; Silverman, M.; Tran, P.; Jaradeh, S.; Thienemann, M.; Frankovich, J. Children With PANS May Manifest POTS. Front. Neurol. 2022, 13, 819636. [CrossRef] [PubMed] [PubMed Central]
196. Santoro, J.D.; Frankovich, J.; Bhargava, S. Continued Presence of Period Limb Movements During REM Sleep in Patients With Chronic Static Pediatric Acute–Onset Neuropsychiatric Syndrome (PANS). J. Clin. Sleep Med. 2018, 14, 1187–1192. [CrossRef]
197. Gaughan, T.; Buckley, A.; Hommer, R.; Grant, P.; Williams, K.; Leckman, J.F.; Swedo, S.E. Rapid Eye Movement Sleep Abnor– malities in Children with Pediatric Acute–Onset Neuropsychiatric Syndrome (PANS). J. Clin. Sleep Med. 2016, 12, 1027–1032. [CrossRef] [PubMed] [PubMed Central]
198. Calaprice, D.; Tona, J.; Parker–Athill, E.C.; Murphy, T.K. A survey of pediatric acute–onset neuropsychiatric syndrome characteris– tics and course. J. Child Adolesc. Psychopharmacol. 2017, 27, 607–618. [CrossRef]
199. Pavone, P.; Parano, E.; Battaglia, C.; Marino, S.; Trifiletti, R.R.; Marino, S.D.; Falsaperla, R. Severe psychotic symptoms in youth with PANS/PANDAS: Case–series. J. Child Adolesc. Psychopharmacol. 2020, 30, 567–571. [CrossRef]
200. Silverman, M.; Frankovich, J.; Nguyen, E.; Leibold, C.; Yoon, J.; Mark Freeman, G., Jr.; Karpel, H.; Thienemann, M. Psychotic symp– toms in youth with Pediatric Acute–onset Neuropsychiatric Syndrome (PANS) may reflect syndrome severity and heterogeneity.
J. Psychiatr. Res. 2019, 110, 93–102. [CrossRef]
201. Kalinowski, A.; Tian, L.; Pattni, R.; Ollila, H.; Khan, M.; Manko, C.; Silverman, M.; Ma, M.; Columbo, L.; Farhadian, B.; et al. Evaluation of C4 gene copy number in Pediatric Acute Neuropsychiatric Syndrome. Dev. Neurosci. 2023, 45, 315–324. [CrossRef] [PubMed]
202. Xu, J.; Frankovich, J.; Liu, R.J.; Thienemann, M.; Silverman, M.; Farhadian, B.; Willett, T.; Manko, C.; Columbo, L.; Leibold, C.; et al. Elevated antibody binding to striatal cholinergic interneurons in patients with pediatric acute–onset neuropsychiatric syndrome. Brain Behav. Immun. 2024, 122, 241–255. [CrossRef] [PubMed] [PubMed Central]
203. Ma, M.; Masterson, E.E.; Gao, J.; Karpel, H.; Chan, A.; Pooni, R.; Sandberg, J.; Rubesova, E.; Farhadian, B.; Willet, T.; et al. Development of Autoimmune Diseases Among Children With Pediatric Acute–Onset Neuropsychiatric Syndrome. JAMA Netw. Open. 2024, 7, e2421688. [CrossRef] [PubMed] [PubMed Central]
204. Melamed, I.; Rahman, S.; Pein, H.; Heffron, M.; Frankovich, J.; Kreuwel, H.; Mellins, E.D. IVIG response in pediatric acute–onset neuropsychiatric syndrome correlates with reduction in pro–inflammatory monocytes and neuropsychiatric measures. Front. Immunol. 2024, 15, 1383973. [CrossRef] [PubMed]
205. Murphy, T.K.; Storch, E.A.; Lewin, A.B.; Edge, P.J.; Goodman, W.K. Clinical factors associated with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Pediatr. 2012, 160, 314–319. [CrossRef]
206. Pavone, P.; Ceccarelli, M.; Marino, S.; Caruso, D.; Falsaperla, R.; Berretta, M.; Rullo, E.V.; Nunnari, G. SARS–CoV–2 related paediatric acute–onset neuropsychiatric syndrome. Lancet Child Adolesc. Health 2021, 5, e19–e21. [CrossRef]
207. Berloffa, S.; Salvati, A.; Pantalone, G.; Falcioni, L.; Rizzi, M.M.; Naldini, F.; Masi, G.; Gagliano, A. Steroid treatment response to post SARS–CoV–2 PANS symptoms: Case series. Front. Neurol. 2023, 14, 1085948. [CrossRef]
208. Saini, T.; Ma, M.; Sandberg, J.; Farhadian, B.; Manko, C.; Xie, Y.; Madan, J.; Bauer, K.; Tran, P.; Frankovich, J. New–onset OCD and juvenile enthesitis–related arthritis after COVID–19 (Three Cases). Dev. Neurosci. 2025, 303–315. [CrossRef] [PubMed]
209. Pallanti, S.; Di Ponzio, M. PANDAS/PANS in the COVID–19 age: Autoimmunity and Epstein–Barr virus reactivation as trigger agents? Children 2023, 10, 648. [CrossRef]
210. Zheng, J.; Frankovich, J.; McKenna, E.; Rowe, N.; MacEachern, S.; Ng, N.; Tam, L.; Moon, P.; Gao, J.; Thienemann, M.; et al. Association of Pediatric Acute–Onset Neuropsychiatric Syndrome With Microstructural Differences in Brain Regions Detected via Diffusion–Weighted Magnetic Resonance Imaging. J. Am. Med. Assoc. (JAMA) Netw. Open 2020, 3, e204063. [CrossRef]
211. Cabrera, B.; Romero–Rebollar, C.; Jiménez–Ángeles, L.; Genis–Mendoza, A.D.; Flores, J.; Lanzagorta, N.; Arroyo, M.; de la Fuente–Sandoval, C.; Santana, D.; Medina–Bañuelos, V.; et al. Neuroanatomical features and its usefulness in classification of patients with PANDAS. CNS Spectr. 2019, 24, 533–543. [CrossRef] [PubMed]
212. Kumar, A.; Williams, M.T.; Chugani, H.T. Evaluation of Basal Ganglia and Thalamic Inflammation in Children With Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infection and Tourette Syndrome: A Positron Emission Tomographic (PET) Study Using 11C–[R]–PK11195. J. Child Neurol. 2015, 30, 749–756. [CrossRef] [PubMed]
213. Giedd, J.N.; Rapoport, J.L.; Garvey, M.A.; Perlmutter, S.; Swedo, S.E. MRI assessment of children with obsessive–compulsive disorder or tics associated with streptococcal infection. Am. J. Psychiatry 2000, 157, 281–283. [CrossRef] [PubMed]
214. Congiu, P.; Gagliano, A.; Carucci, S.; Lanza, G.; Ferri, R.; Puligheddu, M. REM sleep atonia in patients with pediatric acute–onset neuropsychiatric syndrome: Implications for pathophysiology. J. Clin. Sleep Med. 2025, 21, 757–764. [CrossRef] [PubMed]
215. Zebrack, J.E.; Gao, J.; Verhey, B.; Tian, L.; Stave, C.; Farhadian, B.; Ma, M.; Silverman, M.; Xie, Y.; Tran, P.; et al. Neurological Soft Signs at Presentation in Patients With Pediatric Acute–Onset Neuropsychiatric Syndrome. JAMA Netw. Open. 2025, 8, e250314. [CrossRef] [PubMed] [PubMed Central]
216. Frick, L.R.; Rapanelli, M.; Jindachomthong, K.; Grant, P.; Leckman, J.F.; Swedo, S.; Williams, K.; Pittenger, C. Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum. Brain Behav. Immun. 2018, 69, 304–311. [CrossRef]
217. Chain, J.L.; Alvarez, K.; Mascaro–Blanco, A.; Reim, S.; Bentley, R.; Hommer, R.; Grant, P.; Leckman, J.F.; Kawikova, I.; Williams, K.; et al. Autoantibody Biomarkers for Basal Ganglia Encephalitis in Sydenham Chorea and Pediatric Autoimmune Neuropsychi– atric Disorder Associated With Streptococcal Infections. Front. Psychiatry 2020, 11, 564. [CrossRef]
218. Foiadelli, T.; Loddo, N.; Sacchi, L.; Santi, V.; D’Imporzano, G.; Spreafico, E.; Orsini, A.; Ferretti, A.; De Amici, M.; Testa, G.; et al. IL–17 in serum and cerebrospinal fluid of pediatric patients with acute neuropsychiatric disorders: Implications for PANDAS and PANS. Eur. J. Paediatr. Neurol. 2025, 54, 1–7. [CrossRef] [PubMed]
219. Leonardi, L.; Perna, C.; Bernabei, I.; Fiore, M.; Ma, M.; Frankovich, J.; Tarani, L.; Spalice, A. Pediatric acute–onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS): Immunological Features Underpinning Controversial Entities. Children 2024, 11, 1043. [CrossRef]
220. Gromark, C.; Hesselmark, E.; Djupedal, I.G.; Silverberg, M.; Horne, A.; Harris, R.A.; Serlachius, E.; Mataix–Cols, D. A two–to–five year follow–up of a pediatric acute–onset neuropsychiatric syndrome cohort. Child Psychiatry Hum. Dev. 2022, 53, 354–364. [CrossRef] [PubMed]
221. Murphy, T.K.; Lewin, A.B.; Parker–Athill, E.C.; Storch, E.A.; Mutch, P.J. Tonsillectomies and adenoidectomies do not prevent the onset of pediatric autoimmune neuropsychiatric disorder associated with group A streptococcus. Pediatr. Infect. Dis. J. 2013, 32, 834–838. [CrossRef]
222. Gromark, C.; Harris, R.A.; Wickström, R.; Horne, A.; Silverberg–Mörse, M.; Serlachius, E.; Mataix–Cols, D. Establishing a pediatric acute–onset neuropsychiatric syndrome clinic: Baseline clinical features of the pediatric acute–onset neuropsychiatric syndrome cohort at Karolinska Institutet. J. Child Adolesc. Psychopharmacol. 2019, 29, 625–633. [CrossRef] [PubMed]
223. Stagi, S.; Rigante, D.; Lepri, G.; Bertini, F.; Matucci–Cerinic, M.; Falcini, F. Evaluation of autoimmune phenomena in patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Autoimmun. Rev. 2014, 13, 1236–1240. [CrossRef]
224. Williams, K.A.; Swedo, S.E.; Farmer, C.A.; Grantz, H.; Grant, P.J.; D’Souza, P.; Hommer, R.; Katsovich, L.; King, R.A.; Leckman, J.F. Randomized, controlled trial of intravenous immunoglobulin for pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 860–867.e2. [CrossRef]
225. Johnson, M.; Fernell, E.; Preda, I.; Wallin, L.; Fasth, A.; Gillberg, C.; Gillberg, C. Paediatric acute–onset neuropsychiatric syndrome in children and adolescents: An observational cohort study. Lancet Child Adolesc. Health 2019, 3, 175–180. [CrossRef]
226. Pohlman, D. PANDAS Network: PN 2018 State of Our Children SURVEY 2018 [Internet]. PANDAS Network; Downloaded by East Carolina University. 2018. Available online: https://pandasnetwork.org/wp–content/uploads/2018/10/PN–SOOC– SURVEY_2018.pdf(accessed on 5 August 2025).
227. Chan, A.; Phu, T.; Farhadian, B.; Willett, T.; Thienemann, M.; Frankovich, J. Familial Clustering of Immune–Mediated Diseases in Children with Abrupt–Onset Obsessive Compulsive Disorder. J. Child Adolesc. Psychopharmacol. 2020, 30, 345–346. [CrossRef]
228. Trifiletti, R.; Lachman, H.M.; Manusama, O.; Zheng, D.; Spalice, A.; Chiurazzi, P.; Schornagel, A.; Serban, A.M.; Van Wijck, R.; Cunningham, J.L.; et al. Identification of Ultra–Rare Genetic Variants in Pediatric Acute Onset Neuropsychiatric Syndrome (PANS) by Exome and Whole Genome Sequencing. Sci. Rep. 2022, 12, 11106. [CrossRef]
229. Wang, Y.; Du, W.; Hu, X.; Yu, X.; Guo, C.; Jin, X.; Wang, W. Targeting the blood–brain barrier to delay aging–accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm. Sin. B 2023, 13, 4667–4687. [CrossRef] [PubMed]
230. Tărlungeanu, D.C.; Deliu, E.; Dotter, C.P.; Kara, M.; Janiesch, P.C.; Scalise, M.; Galluccio, M.; Tesulov, M.; Morelli, E.; Sonmez, F.M.; et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 2016, 167, 1481–1494.e18. [CrossRef]
231. Xiu, Z.; Sun, L.; Liu, K.; Cao, H.; Qu, H.Q.; Glessner, J.T.; Ding, Z.; Zheng, G.; Wang, N.; Xia, Q.; et al. Shared Molecular Mechanisms and Transdiagnostic Potential of Neurodevelopmental Disorders and Immune Disorders. Brain Behav. Immun. 2024, 119, 767–780. [CrossRef] [PubMed]
232. Chiu, H.–J.; Sun, C.–K.; Tsai, S.–J.; Bai, Y.–M.; Hung, K.–C.; Hsu, J.–W.; Huang, K.–L.; Su, T.–P.; Chen, T.–J.; Sun, A.; et al. A Nationwide Study of the Risks of Major Mental Disorders among the Offspring of Parents with Rheumatoid Arthritis. Sci. Rep. 2022, 12, 4962. [CrossRef]
233. Arrondo, G.; Solmi, M.; Dragioti, E.; Eudave, L.; Ruiz–Goikoetxea, M.; Ciaurriz–Larraz, A.M.; Magallon, S.; Carvalho, A.F.; Cipriani, A.; Fusar–Poli, P.; et al. Associations between Mental and Physical Conditions in Children and Adolescents: An Umbrella Review. Neurosci. Biobehav. Rev. 2022, 137, 104662. [CrossRef]
234. Li, Q.; Barres, B.A. Microglia and Macrophages in Brain Homeostasis and Disease. Nat. Rev. Immunol. 2018, 18, 225–242. [CrossRef]
235. Lenz, K.M.; Nelson, L.H. Microglia and Beyond: Innate Immune Cells as Regulators of Brain Development and Behavioral Function. Front. Immunol. 2018, 9, 698. [CrossRef]
236. Lussier, A.A.; Bodnar, T.S.; Weinberg, J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front. Neurosci. 2021, 15, 788630. [CrossRef]
237. Asslih, S.; Damri, O.; Agam, G. Neuroinflammation as a Common Denominator of Complex Diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders). Int. J. Mol. Sci. 2021, 22, 6138. [CrossRef]
238. Masterson, E.E.; Miles, K.; Schlenk, N.; Manko, C.; Ma, M.; Farhadian, B.; Chang, K.; Silverman, M.; Thienemann, M.; Frankovich, J. Defining Clinical Course of Patients Evaluated for Pediatric Acute–Onset Neuropsychiatric Syndrome: Phenotypic Classification Based on 10 Years of Clinical Data. Dev. Neurosci. 2025, 270–286. [CrossRef] [PubMed]
239. Maser, J.D.; Akiskal, H.S. Spectrum concepts in major mental disorders. Psychiatr. Clin. N. Am. 2002, 25, xi–xiii. [CrossRef]
240. Hopwood, C.J.; Morey, L.C.; Markon, K.E. What is a psychopathology dimension? Clin. Psychol. Rev. 2023, 106, 102356. [CrossRef] [PubMed]
241. Pacheco, J.; Garvey, M.A.; Sarampote, C.S.; Cohen, E.D.; Murphy, E.R.; Friedman–Hill, S.R. Annual Research Review: The contributions of the RDoC research framework on understanding the neurodevelopmental origins, progression and treatment of mental illnesses. J. Child Psychol. Psychiatry 2022, 63, 360–376. [CrossRef]
242. Arnsten, A.F.; Rubia, K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: Disruptions in neurodevelopmental psychiatric disorders. J. Am. Acad. Child Adolesc. Psychiatry 2012, 51, 356–367. [CrossRef] [PubMed]
243. Vreeland, A.; Calaprice, D.; Or–Geva, N.; Frye, R.E.; Agalliu, D.; Lachman, H.M.; Pittenger, C.; Pallanti, S.; Williams, K.; Ma, M.; et al. Postinfectious Inflammation, Autoimmunity, and Obsessive–Compulsive Disorder: Sydenham Chorea, Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection, and Pediatric Acute–Onset Neuropsychiatric Disorder. Dev. Neurosci. 2023, 45, 361–374. [CrossRef]
244. Karakochuk, C.; Whitfield, K.; Green, T.; Kraemer, K. The Biology of the First 1000 Days; CRC Press: Boca Raton, FL, USA, 2018.
245. Wang, Q.; Yang, Q.; Liu, X. The Microbiota–Gut–Brain Axis and Neurodevelopmental Disorders. Protein Cell 2023, 14, 762–775. [CrossRef]
246. Murgia, F.; Gagliano, A.; Tanca, M.G.; Or–Geva, N.; Hendren, A.; Carucci, S.; Pintor, M.; Cera, F.; Cossu, F.; Sotgiu, S.; et al. Metabolomic Characterization of Pediatric Acute–Onset Neuropsychiatric Syndrome (PANS). Front. Neurosci. 2021, 15, 645267. [CrossRef]
247. Likhitweerawong, N.; Thonusin, C.; Boonchooduang, N.; Louthrenoo, O.; Nookaew, I.; Chattipakorn, N.; Chattipakorn, S.C. Profiles of Urine and Blood Metabolomics in Autism Spectrum Disorders. Metab. Brain Dis. 2021, 36, 1641–1671. [CrossRef]
248. Gagliano, A.; Murgia, F.; Capodiferro, A.M.; Tanca, M.G.; Hendren, A.; Falqui, S.G.; Aresti, M.; Comini, M.; Carucci, S.; Cocco, E.; et al. 1H–NMR–Based Metabolomics in Autism Spectrum Disorder and Pediatric Acute–Onset Neuropsychiatric Syndrome. J. Clin. Med. 2022, 11, 6493. [CrossRef]
249. Gagliano, A., Cucinotta, F., Giunta, I., et al. (2025). The Immune/Inflammatory Basis of Neurodevelopmental Disorders and Pediatric Acute-Onset Neuropsychiatric Syndrome: A Scoping Review. International Journal of Molecular Sciences, 26(16), 7767. https://doi.org/10.3390/ijms26167767
免责声明:本文中所有内容仅供读者交流学习,不能代替专业建议和诊疗,如有任何问题或疑虑,请务必咨询医生或者专业人士,图文转自网络,著作权属归原创者所有,如有侵权请在后台留言联系我们进行删除!