Bile acids (BAs) are cholesterol derivatives synthesized by the liver, exhibit variation between different species. Researchers have long appreciated that microbiota play the roles in the biotransformation of BAs. However, relatively few studies have been reported on microbial-mediated production and transformation of BAs in amphibians. Our focus here is principally on difference of intestinal microbial diversity and BAs profiles between two common amphibians, Bufo gargarizans (B. gargarizans) and Rana chensinensis (R. chensinensis) tadpoles, through intestinal targeted BAs metabolomics and fecal metagenomic sequencing. The results demonstrated that B. gargarizans possessed higher levels of total BAs and higher ratio of unconjugated / conjugated BAs. In addition, the relative abundance of microbiota with bile salt hydrolase (BSH) activity in B. gargarizans was significantly higher than that of R. chensinensis, which may facilitate the conversion of conjugated to unconjugated BAs. Meanwhile the higher prevalence of bile-acid-induced (BAI) gene encoding microbiota in R. chensinensis may promote the synthesis of deoxycholic acid (DCA). Furthermore, discrepancies in virulence factors (VFs) and energy metabolism were observed between the two species, which may be linked to differences in the microbiota. This study revealed substantial differences in intestinal microbes and BAs across amphibian species, emphasizing the significant impact of intestinal microbes on BAs metabolism.