Abalone Haliotis discus hannai (initial weight: 38.79 ± 0.70 g) was used as the experimental animal in a 105-day feeding trial to investigate the influence of dietary bile acids levels on the growth, anti-oxidation, immune response and intestinal microbiota. Six isonitrogenous and isolipidic diets were prepared by adding 0 (control group), 15, 30, 60, 120 and 240 mg/kg of bile acids, respectively (named BA0, BA15, BA30, BA60, BA120 and BA240, respectively). It was found that survival of abalone between groups had no significant difference (P > 0.05). Compared to the control, significant improvements in weight gain rate (WGR) were observed in the groups of BA30 and BA60 (P < 0.05). Based on WGR, the broken line regression model analysis showed that the optimum demand for dietary bile acids for abalone was 35.47 mg/kg. Dietary bile acids increased the total anti-oxidative capacity and activities of catalase, superoxide dismutase, lysozyme and alkaline phosphatase, meanwhile decreased the content of malondialdehyde, alanine aminotransferase and aspartate aminotransferase activities in the cell-free hemolymph (P < 0.05). When bile acids were added to the diets, mRNA levels of genes related to pro-inflammatory factors and apoptosis in the digestive gland were down-regulated (P < 0.05). In contrast, the expression of genes related to anti-oxidation was significantly up-regulated (P < 0.05). The Firmicutes, Actinobacteriota and Proteobacteria were the most abundant phyla in intestine. And dietary bile acids significantly decreased the abundance of Actinobacteria and increased the abundance of Firmicutes (P < 0.05). In conclusion, supplementation of dietary bile acids within 120 mg/kg significantly increased the growth of abalone. The 34.62 mg/kg of dietary bile acids significantly increased the anti-oxidative capacity of abalone. Appropriate levels of dietary bile acids (34.62-61.75 mg/kg) promote the immunity of abalone. Application of appropriate levels of bile acids in diets (34.62 mg/kg) changed the intestinal microbiota and promoted the intestinal health of abalone.