Because of the insolubility of miriplatin in water, miriplatin and lipiodol suspension is the sole formulation of miriplatin approved in Japan to treat hepatocellular carcinoma by transcatheter arterial chemoembolization. Until now, there have been no reports of other pharmaceutical formulations of miriplatin except miriplatin/lipiodol suspension. In this study, we aimed not only to develop miriplatin-loaded liposomes (lipomiriplatins) which could be administrated systematically for tumors besides hepatocellular carcinoma but also to ascertain whether miriplatin, like its analog of NDDP, was a liposome-dependent antitumor agent. We found that miriplatin could be successfully incorporated into liposomes, and both the stability and antitumor activity of lipomiriplatins were independent of the liposomal compositions. Especially, HPLC was successfully established as the quantitative method for lipomiriplatins, which completely eliminated the interference of cholesterol. Lipomiriplatins possessed favorable colloidal properties (99.71 ± 0.56 nm, -50 mV), high drug-loading capacity (about 2.2 mg/mL), excellent entrapment efficiency (>95%), and robust stability. The remarkable antitumor activities of lipomiriplatin were proved to be mediated by inducing cell apoptosis and were comparable to that of the commercial cisplatin and oxaliplatin injections, indicating that lipomiriplatins showed great promise for future potential clinical application via systematic administration.