Although it is known that progesterone facilitates the estradiol-induced gonadotropin surge at midcycle, its effect on LH secretion at other times of the follicular phase remains to be investigated. In this study, we investigate the role of progesterone on tonic LH secretion in the ovariectomized primate replaced with estradiol at levels representative of the follicular phase. The experiments were performed in nine ovariectomized rhesus monkeys, either unreplaced with estradiol or after a 5-day estradiol therapy to mimic early follicular (10-36 pg/mL; low dose) and midfollicular (medium dose; 40-75 pg/mL) concentrations. We used two antiprogesterone compounds, RU-486 (5 mg) and ORG-31806 (1 mg), to antagonize endogenous progesterone activity and studied their acute effects on LH secretion in each group. LH concentrations were measured at 15-min intervals for a 3-h baseline period and during a 5-h period after antagonist administration. LH concentrations remained unchanged after either antiprogesterone compound or diluent (ethanol) administration in the estrogen-unreplaced monkeys or after low dose estradiol replacement. However, both antiprogesterone compounds significantly decreased LH secretion in monkeys pretreated with the medium dose of estradiol; by 5 h, the mean (+/-SE) areas under the LH curve were 54.8 +/- 4.1% and 64.0 +/- 4.2% after RU-486 and ORG-31806, respectively (P < 0.05 vs. unreplaced and low dose estrogen-replaced groups). To exclude the possibility that the LH response reflects an agonist action of the progesterone antagonist, LH responses to progesterone infusions (at three doses to reproduce preovulatory, luteal, and pharmacological levels) were also examined in monkeys pretreated with midfollicular levels of estradiol. In none of these was there a decrease in LH; rather, progesterone infusions resulted in an increase in LH secretion in all three groups (to 115-194% of baseline in seven of eight monkeys). Finally, we determined that at the dose used in our protocol, neither of the two progesterone antagonists was able to prevent dexamethasone-induced cortisol suppression, thus excluding the possibility that results after progesterone antagonist administration may reflect a putative antiglucocorticoid activity of these compounds. When the doses of the antiprogesterone compounds were increased 6 times, only RU-486 counteracted the effect of dexamethasone on cortisol. In summary, our data indicate support by progesterone of tonic LH secretion in the nonhuman primate under estrogenic conditions similar to the midfollicular phase of the menstrual cycle. Significantly, because the experiments were performed in ovariectomized monkeys, and endogenous progesterone was most probably of adrenal origin, the data also demonstrate a role of the hypothalamo-pituitary-adrenal axis in support of gonadotropin secretion.