The accumulation of polyurethane plastics (PU-PS) in the environment is on the rise, posing potential risks to the health and function of ecosystems. However, little is known about the degradation behavior of PU-PS in the environment, especially water environment. To address this knowledge gap, we investigated and isolated a degrading strain of Streptomyces sp. B2 from the surface of polyurethane coatings. Subsequently, a photoreactor was employed to simulate the degradation process of bio-based polyurethane (BPU) and petroleum-based polyurethane (PPU) under three conditions, including single microorganism (SM), single light exposure (SL), and combined light exposure/microorganism action (ML) in aqueous solution. The results indicated that PU-PS mainly relies on biodegradation, with the highest degradation rate observed after 28 d under SM condition (BPU 5.69 %; PPU 5.25 %). SL inhibited microbial growth and degradation, with the least impact on plastic degradation. Microorganisms colonized the plastic surface, secreting relevant hydrolytic enzymes and organic acids into the culture medium, providing a negative charge. The carbon chains were broken and aged through hydrogen peroxide induction or attack by oxygen free radicals. This process promoted the formation of oxidized functional groups such as OH and CO, disrupting the polymer's structure. Consequently, localized fragmentation and erosion of the microstructure occurred, resulting in the generation of secondary microplastic (MPs) particles, weight loss of the original plastic, increased surface roughness, and enhanced hydrophilicity. Additionally, BPU exhibited greater degradability than PPU, as microorganisms could utilize the produced fatty acids, which promoted their reproduction. In contrast, PPU degradation generated a large amount of isocyanate, potentially toxic to cells and inhibiting biodegradation. This study unveils the significant role of microorganisms in plastic degradation and the underlying degradation mechanisms of BPU, providing a novel strategy for polyurethane degradation and valuable information for comprehensive assessment of the behavior and fate of MPs in the environment.