Neuroblastoma is a common childhood tumor derived from the peripheral nervous system. Favorable neuroblastomas usually express TrkA, the receptor for nerve growth factor (NGF), whereas unfavorable, MYCN-amplified neuroblastomas usually express TrkB and its ligand, brain-derived neurotrophic factor (BDNF). Here, we provide evidence that the TrkB-BDNF pathway is associated with enhanced survival and resistance to chemotherapy in neuroblastoma. We transfected the neuroblastoma line SH-SY5Y, which has endogenous expression of BDNF, with a full-length TrkB expression vector, and obtained clones with moderate or high levels of expression. Cells were exposed in vitro to chemotherapy agents used to treat neuroblastomas: doxorubicin, etoposide (VP16), and cisplatin. Chemoresistance was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for cell survival and by ELISA for cell death. In all cases, the TrkB-expressing subclones were more resistant to treatment than the parent line. Furthermore, when the TrkB tyrosine kinase was blocked with the Trk-specific inhibitor CEP-2563, or by neutralizing antibody to BDNF, sensitivity to chemotherapy was significantly increased. We also found constitutive phosphorylation of AKT at the Ser-473 site in TrkB transfectants, whereas there was only a minimal level of constitutive phosphorylation of AKT in SY5Y cells. These results show that the TrkB-BDNF pathway provides a survival advantage when exposed to DNA-damaging reagents, and, therefore, this autocrine pathway may play an important role in mediating the drug-resistant phenotype associated with TrkB-expressing neuroblastomas. Activation of PI3K/AKT survival pathway may contribute to the increased drug resistance in TrkB-expressing neuroblastomas.