BACKGROUNDMacrophage polarization, switching between pro-inflammatory M1 and anti-inflammatory M2 states, is crucial for disease dynamics in inflammatory, metabolic, and cancer contexts. Modulating this polarization is a clinical challenge, but natural alkaloids, with their potent anti-inflammatory and immunomodulatory effects, show promise in reprogramming macrophage phenotypes.PURPOSEThis review explores the applications of natural alkaloids-such as matrine, berberine, koumine, sophoridine, and curcumin-in modulating macrophage polarization. It aims to highlight their potential in reprogramming macrophage phenotypes and improving therapeutic outcomes across various diseases.METHODSA comprehensive literature review was conducted using databases like PubMed, Web of Science, Science Direct and Google Scholar, employing targeted keywords related to natural alkaloids, macrophage polarization, and disease treatment. The analysis primarily focused on articles published between 2020 and 2024.RESULTSThis review summarizes how natural alkaloids regulate macrophage polarization, promoting the M2 phenotype to reduce inflammation, thereby playing a therapeutic role in anti-inflammatory, cardiovascular, and metabolic diseases. At the same time, they also promote M1 polarization to inhibit tumor development.CONCLUSIONAccumulating evidence demonstrates that macrophage polarization regulation by natural alkaloids holds notable clinical value for disease intervention. They alleviate inflammation, enhance antitumor immunity, and improve treatment outcomes, demonstrating their importance in innovative therapeutic strategies. Moreover, combining alkaloids with immunotherapy enhances treatment efficacy, further highlighting their versatility in a variety of therapeutic applications.