The long-term use of tripterygium glycosides (TG) can lead to male reproductive damage. Research indicates that zinc and selenium exhibit a synergistic effect in the male reproductive system, with the combined preparation demonstrating superior therapeutic effects compared to individual preparations. The purpose of this study was to explore the specific mechanism by which zinc and selenium mitigate reproductive toxicity induced by TG in male rats. Rats were randomly assigned to three groups: control group (C group), model group (M group, receiving TG at 30 mg/kg/day), and model + zinc + selenium group (ZS group). The ZS group was also given TG gavage for the first 4 weeks. Starting from the fifth week until the conclusion of the eighth week, the ZS group received an additional protective treatment of 10 mg/kg/day Zn and 0.1 mg/kg/day Se 4 h after TG administration. Following euthanasia, blood samples, rat testis, and epididymis tissues were collected for further experiments. Combined zinc-selenium treatment corrects the imbalance of zinc-selenium homeostasis in testicular tissue induced by TG. This is achieved by upregulating the expression of metal transcription factor (MTF1) and zinc transporters ZIP8 and ZIP14 and downregulating the expression of ZnT10. Improvement of zinc and selenium homeostasis enhanced the expression of zinc-containing enzymes (ADH, LDH, and ALP) and selenoproteins (GPx1 and SELENOP) in the testis. At the same time, zinc and selenium mitigate TG-induced reproductive damage by promoting the activity of antioxidant enzymes and upregulating the expression of proteins associated with the oxidative stress pathway, including Nrf2, Keap1, HO-1, PI3K, and p-AKT.