Inhibitory gamma-aminobutyric acid (GABA)(A) receptors are subject to modulation at a variety of allosteric sites, with pharmacology dependent on receptor subunit combination. The influence of different alpha subunits in combination with beta3gamma2s was examined in stably expressed human recombinant GABA(A) receptors by measuring (36)Cl influx through the ion channel pore. Muscimol and GABA exhibited similar maximal efficacy at each receptor subtype, although muscimol was more potent, with responses blocked by picrotoxin and bicuculline. Receptors containing the alpha3 subunit exhibited slightly lower potency. The comparative pharmacology of a range of benzodiazepine site ligands was examined, revealing a range of intrinsic efficacies at different receptor subtypes. Of the diazepam-sensitive GABA(A) receptors (alpha1, alpha2, alpha3, alpha5), alpha5 showed the most divergence, being discriminated by zolpidem in terms of very low affinity, and CL218,872 and CGS9895 with different efficacies. Benzodiazepine potentiation at alpha3beta3gamma2s with nonselective agonist chlordiazepoxide was greater than at alpha1, alpha2, or alpha5 (P < 0.001). The presence of an alpha4 subunit conferred a unique pharmacological profile. The partial agonist bretazenil was the most efficacious benzodiazepine, despite lower alpha4 affinity, and FG8205 displayed similar efficacy. Most striking were the lack of affinity/efficacy for classical benzodiazepines and the relatively high efficacy of Ro15-1788 (53 +/- 12%), CGS8216 (56 +/- 6%), CGS9895 (65 +/- 6%), and the weak partial inverse agonist Ro15-4513 (87 +/- 5%). Each receptor subtype was modulated by pentobarbital, loreclezole, and 5alpha-pregnan-3alpha-ol-20-one, but the type of alpha subunit influenced the level of potentiation. The maximal pentobarbital response was significantly greater at alpha4beta3gamma2s (226 +/- 10% increase in the EC(20) response to GABA) than any other modulator. The rank order of potentiation for pregnanolone was alpha5 > alpha2 > alpha3 = alpha4 > alpha1, for loreclezole alpha1 = alpha2 = alpha3 > alpha5 > alpha4, and for pentobarbital alpha4 = alpha5 = alpha2 > alpha1 = alpha3.