Depression is a major global health burden, and current treatments are limited by delayed onset and incomplete efficacy, highlighting the need for novel, mechanism-based therapies. Chronic restraint stress (CRS) induces behavioral, hormonal, and synaptic changes relevant to depression, but the role of adiponectin signaling remains unclear. Here, we examined whether the adiponectin receptor agonist AdipoRon exerts antidepressant-like effects via brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling in mice subjected to 14 days of CRS. CRS produced anxiety- and depression-like behaviors, elevated plasma corticosterone, reduced circulating adiponectin, and selectively decreased hippocampal adiponectin and adiponectin receptor 2 (AdipoR2), accompanied by reduced PSD-95 and GluA1 in CA3 and the dentate gyrus (DG). AdipoRon treatment (20 mg/kg, days 8-14) prevented behavioral deficits, normalized corticosterone and adiponectin levels, and restored hippocampal AdipoR2, PSD-95, and GluA1 expression in CA3 and DG. AdipoRon also reversed CRS-induced decreases in hippocampal phosphorylated AMPK (p-AMPK), PPARα, BDNF, and phosphorylated TrkB (p-TrkB), with p-AMPK/AMPK and PPARα levels positively correlating with BDNF. Immunofluorescence confirmed BDNF recovery in CA3 and DG. Importantly, pretreatment with the TrkB antagonist ANA-12 abolished the behavioral, hormonal, and molecular effects of AdipoRon, indicating that its actions require BDNF-TrkB activation. These findings suggest that AdipoRon mitigates CRS-induced deficits via hippocampal AdipoR2-AMPK-PPARα-BDNF-TrkB signaling and highlight AdipoR2 as a promising target for depression therapy under chronic stress.