点击“蓝字”关注我们
作者:唐喜香 陈燕铭教授
单位:中山大学附属第八医院
引言:糖尿病视网膜病变(Diabetic Retinopathy, DR)是最常见的糖尿病微血管并发症,同时也是全球工作年龄人群首位致盲性眼病。随着人口老龄化及糖尿病发病率攀升,DR防治形势日趋严峻[1]。2025年,医工交叉技术突破、靶向治疗研究的深化及诊疗指南的更新,推动DR筛查、诊断与治疗取得里程碑式进展。本文将系统梳理年度核心进展,并且展望未来的治疗方向,迎接新挑战。
一、早筛早防:人工智能(AI)与大数据驱动精准化防控
AI与大数据是DR早筛的关键支撑,已形成技术验证、临床应用与标准化建设的完整体系[2]。自动视网膜成像分析系统(ARIAS)是DR筛查的核心工具,多项大样本研究证实其高诊断效能[3-5]。英格兰超20万人次真实世界研究表明,多个ARIAS商用系统对中重度及增殖期DR的检测敏感性超95%,且不受年龄、种族的影响,可作为一线分诊工具[3,4]。最新荟萃分析显示基于深度学习的ARIAS检测威胁视力DR性能高(AUC 0.974),在高收入国家具有明确成本效益[5]。
多模态眼成像AI模型实现临床落地。国内最新研发的多模态眼成像基础大模型EyeFM,整合彩色眼底照、OCT、超广角眼底照等五种核心影像模态,经视觉-语言预训练可精准识别病变、生成规范报告并应答医学问题。全球多中心RCT验证其显著提升基层诊疗准确率[6]。香港理工大学EyeCLIP多模态视觉基础模型,通过多模态对比学习解决了稀有病变识别难题[7]。
此外,AI可通过解析视网膜厚度图谱,明确其与基因组变异、代谢物及全身疾病的相关性[8],使视网膜成为全身代谢免疫状态的评估窗口,拓展了DR筛查的价值。
标准化建设与伦理规范是AI-DR早筛技术规模化推广的核心保障。视网膜成像DICOM标准的缺失限制了AI模型跨中心研发,而AI-READI标准化数据集的推出为多模态DR研究提供了统一支撑[9]。AI“黑匣子”效应、数据隐私及算法偏见等问题需通过监管机构、医疗人员与开发者的协同建立规范体系,确保技术安全落地[10]。
二、机制解析与靶点研发
2025年DR基础研究聚焦病理网络解析、标志物发掘及靶点研发,取得多维度突破,覆盖免疫、代谢、肠-眼轴等,为精准诊疗奠定核心依据。
致病机制网络方面,研究揭示高糖通过单核细胞外泌体骨膜蛋白-HIF-1α轴驱动新生血管生成[11];GLP-1受体激动剂可抑制STING通路保护血管内皮[12];低血糖通过HIF-1α/2α破坏血-视网膜屏障[13,14]。肠-眼轴研究首次确立吲哚-3-丙酸为DR进展的肠道功能障碍标志物[15],拓展了代谢-免疫互作认知。
分子分型与预警标志物方面,增殖期DR被精准分为免疫防御型与内皮线粒体功能障碍型[16];泪液乳酸、房水RBP3及丛蛋白B2等与DR进展密切相关[17-19]。
治疗靶点与技术平台转化取得实质进展,EPCR-HO-1轴[20]、AGGF1-TNFSF12/FN14通路[21]可成为干预靶点,MFAP4阻断抗体在灵长类模型显效[22],EMDV纳米系统可靶向调控线粒体稳态[23]。全球首个血管化视网膜类器官模型成功构建,整合神经视网膜、血管网络与小胶质细胞,可动态模拟DR炎症与血-视网膜屏障破坏过程[24],为抗VEGF药物高通量筛选提供了病理微环境平台。
三、治疗策略的革新:靶点多元化与给药长效化
近年来,DR药物治疗已从传统抗VEGF单靶点干预逐步转向多通路协同调控。双特异性抗体Faricimab(Ang-2/VEGF-A双重抑制剂)在DR治疗的循证医学证据持续深化。YOSEMITE/RHINE试验事后分析揭示,Faricimab较阿柏西普显著增强血管稳定性,注射间隔可延长至16周,显著降低患者治疗负担[25,26]。英国FARWIDE-DMO真实世界研究的12个月数据验证了其在初治/经治糖尿病黄斑水肿(DME)患者中的有效性、耐久性及安全性[27]。以上证据确立了Ang-2/VEGF-A双重抑制在优化解剖结局、延长给药间隔及降低治疗负担中的临床价值。
我国自主研发的全球首创VEGF/FGF双靶融合蛋白RC28-E,在一项多中心、随机、开放标签Ⅱ期临床试验中,对照单靶抗VEGF药物治疗DME。结果显示RC28-E可显著提升最佳矫正视力,降低黄斑中心视网膜厚度,有效缓解黄斑水肿[28]。
更多治疗DR的新药涌现,如候选药物新药EXN407(局部SRPK1抑制剂)1b/2a期试验显示视网膜血管渗漏减少,安全耐受,无严重不良事件且依从性高,将启动2b期临床试验治疗非增生期DR。
中西医结合是治疗DR的重要手段,中药多靶点作用覆盖DR复杂病理,早期个体化干预阻断病变进展。复方丹参滴丸作为代表性药物之一,其指南推荐地位逐步上升,获2025年多部指南/专家共识强推荐用于DR治疗,明确其可改善视功能、减少出血及渗漏、降低黄斑厚度、提升治疗有效率[29-32]。
四、创新治疗手段的开发
纳米递药技术突破血-视网膜屏障
针对传统抗VEGF药物需反复玻璃体注射的痛点,纳米药物递送技术实现关键突破。陈燕铭团队[33]开发的TAT-iRGD双靶向纳米滴眼液,可搭载STING抑制剂穿透血-视网膜屏障,抑制新生血管生成,使动物模型视网膜渗漏减少65%。Chen等[34]报道的Pene/LQ015滴眼液(含抗VEGFA纳米抗体及穿膜肽)在食蟹猴模型中可持续抑制新生血管,安全耐受;Nguyen等[35]设计的可降解硅纳米针结膜下贴片实现贝伐单抗一年长效缓释,使兔模型视网膜新生血管降低85%。此外,纳米载体可高效递送核酸,非病毒制剂通过增强药物稳定性、精准靶向,减少眼内炎风险,为DR提供非侵入、长效治疗新路径[36,37]。
间充质干细胞及外泌体治疗
间充质干细胞来源细胞外囊泡(MEVs)及其工程化外泌体为DR治疗提供了无细胞精准递送策略。Guan等[38]报道,CP05/KV11双修饰外泌体可靶向递送抗炎药物,使黄斑水肿消退率提升58%。Sun等[39]证实,MEVs通过递送去泛素化酶USP25抑制CRYAA蛋白泛素化,改善db/db小鼠视网膜功能并抑制光感受器凋亡;且经光感受器靶向肽MH42修饰后修复效率更高。工程化细胞外囊泡具有靶向性强、可荷载多分子、免疫原性低等优势,为DR血管-神经双维度干预提供了创新方向。
基因治疗探索
以RGX-314(Sura-vec)为代表的视网膜基因疗法取得里程碑进展。ABBV-RGX-314通过AAV8载体递送抗VEGF抗体片段,抑制异常血管生成。2025年美国眼科学会(AAO)年会报道的II期ALTITUDE试验2年结果显示高剂量组NPDR患者100%病情稳定,视力威胁事件风险下降89%,且无严重不良反应。首个获批眼部基因疗法Luxturna®的临床应用验证了该领域可行性,双AAV载体、脂质纳米粒等递送系统革新进一步提升视网膜靶向效率。当前,病毒载体免疫原性、细胞转导效率受限等问题仍待突破,CRISPR/Cas介导的基因组编辑、prime编辑及干细胞移植联用等技术的发展将为突破瓶颈提供关键支撑[40,41]。
五、挑战与未来展望
2025年DR诊疗技术革新推动临床模式从“被动对症治疗”向“风险预警-精准干预-全程管理”转变,但仍面临诸多现实挑战:中低收入国家DR筛查覆盖率低,晚期增殖期DR治疗成本高,且AI辅助诊断模型在基层的可及性与实用性待提升。未来DR领域的发展聚焦三大核心方向:①深化AI与人机协同技术临床应用,研发便携低成本的基层筛查设备以提高早期诊断率;②加速基因治疗、纳米递送及干细胞外泌体等创新技术转化,实现DR长效微创治疗;③构建分级防控体系,整合泪液特异性标志物检测与AI风险预测模型,优化医疗资源的纵向配置。随着精准医学与医工交叉技术深度融合,DR“早发现、早干预、低损伤”的诊疗目标逐步达成。后续需加强多中心临床协作,推动诊疗指南下沉与技术普及,降低糖尿病相关失明风险,为全球DR患者提供全周期视觉健康保障。
参考文献
(上下滑动可查看)
[1].Sivaprasad, S, Wong, TY, Gardner, TW, et al. Diabetic retinal disease. Nat Rev Dis Primers. 2025; 11 Nat Rev Dis Primers. doi: 10.1038/s41572-025-00646-x
[2].Angus DC, Khera R, Lieu T, et al. AI, Health, and Health Care Today and Tomorrow: The JAMA Summit Report on Artificial Intelligence. JAMA, 2025, 334: doi: 10.1001/jama.2025.18490
[3].Macdonald T, Zhelev Z, Liu X, et al. Generating evidence to support the role of AI in diabetic eye screening: considerations from the UK National Screening Committee. Lancet Digit Health, 2025, 7: doi: 10.1016/j.landig.2024.12.004
[4].Rudnicka AR, Shakespeare R, Chambers R, et al. Automated retinal image analysis systems to triage for grading of diabetic retinopathy: a large-scale, open-label, national screening programme in England. Lancet Digit Health, 2025: doi: 10.1016/j.landig.2025.100914
[5].Ran AR, Ding JL, Tang Z, et al. Real-World Prospective Validation and Economic Evaluation of Deep Learning-Based Diabetic Retinopathy Detection From Fundus Photographs: A Systematic Review and Meta-analysis. Diabetes Care, 2025: doi: 10.2337/dc25-1493
[6].Huang T, Sheng B, et al. An eyecare foundation model for clinical assistance: a randomized controlled trial. Nature Medicine, 2025: doi:10.1038/s41591-025-02345-x
[7].10.Shi D, Zhang W, Yang J, et al. A multimodal visual-language foundation model for computational ophthalmology. NPJ Digit Med, 2025, 8(1): 381
[8].Jackson VE, Wu Y, Bonelli R, et al. Multi-omic spatial effects on high-resolution AI-derived retinal thickness. Nat Commun, 2025, 16: doi: 10.1038/s41467-024-55635-7
[9]. Gim N, Ferguson AN, Blazes M, et al. The march to harmonized imaging standards for retinal imaging. Prog Retin Eye Res, 2025, 107: doi: 10.1016/j.preteyeres.2025.101363
[10].Savastano MC, Rizzo C, Fossataro C, et al. Artificial intelligence in ophthalmology: Progress, challenges, and ethical implications. Prog Retin Eye Res, 2025, 107: doi: 10.1016/j.preteyeres.2025.101374
[11].Shen, W, Nie, Z, Wang, M, et al. Monocyte-derived exosomal periostin driven by histone lactylation contributes to retinal neovascularization. P NATL ACAD SCI USA. 2025; 122 P NATL ACAD SCI USA. doi: 10.1073/pnas.250170412
[12].He, X, Wen, S, Tang, X, et al. Glucagon-like peptide-1 receptor agonists rescued diabetic vascular endothelial damage through suppression of aberrant STING signaling. ACTA PHARM SIN B. 2024; 14 ACTA PHARM SIN B. doi: 10.1016/j.apsb.2024.03.01
[13].Guo, C, Niu, Y, Pan, X, et al. Hypoglycemia promotes inner blood-retinal barrier breakdown and retinal vascular leakage in diabetic mice.Sci Transl Med. 2025; 17. doi: 10.1126/scitranslmed.adq535
[14].Tysoe, O. Hypoglycaemia exacerbates diabetic retinopathy via HIF accumulation.Nat Rev Endocrinol. 2025; 21. doi: 10.1038/s41574-025-01136-
[15].Prasad, R, Adu-Rutledge, Y, Ziani, B, et al. Indole-3-propionic acid links gut dysfunction to diabetic retinopathy: a biomarker and novel therapeutic approach.Gut. 2025. doi: 10.1136/gutjnl-2025-33618
[16].McCann, MA, Baccouche, B, Li, Y, et al. Proliferative diabetic retinopathy subtypes defined by immune defense and endothelial mitochondrial dysfunction.?Signal Transduct Target Ther. 2025; 10. doi: 10.1038/s41392-025-02448-
[17].Wen, X, Ng, TK, Zhang, G, et al. Tear lactate improves the evaluation of proliferative diabetic retinopathy in type-2 diabetes patients. Mol Biomed. 2025; 6 Mol Biomed. doi: 10.1186/s43556-025-00297-0
[18].Chokshi, T, Fickweiler, W, Jangolla, S, et al. Reduced Aqueous Retinol-Binding Protein 3 Concentration Is Associated With Diabetic Macular Edema and Progression of Diabetic Retinopathy.Diabetes Care. 2025; 48. doi: 10.2337/dc24-1260
[19].Yang, S, Xin, Z, Xiong, R, et al. Proteome atlas for mechanistic discovery and risk prediction of diabetic retinopathy. Nat Commun. 2025; 16. doi: 10.1038/s41467-025-64634-1
[20].Song, H, Li, Q, Gui, X, et al. Endothelial protein C receptor promotes retinal neovascularization through heme catabolism. Nat Commun. 2025; 16 Nat Commun. doi: 10.1038/s41467-025-56810-0
[21].Cheng, Y, Zhang, M, Li, C, et al. Endothelial AGGF1 promotes retinal angiogenesis by coordinating TNFSF12/FN14 signalling. Nat Commun. 2025; 16 Nat Commun. doi: 10.1038/s41467-025-55970-3
[22].Schlosser, A, Pilecki, B, Allen, C, et al. Pharmacological blocking of microfibrillar-associated protein 4 reduces retinal neoangiogenesis and vascular leakage. Mol Ther. 2025; 33 Mol Ther. doi: 10.1016/j.ymthe.2025.01.038
[23].Gui, S, Gao, J, Tao, T, et al. Endothelial mitochondrial-derived vesicles (EMDVs) with retinal targeted homing properties dynamically modulate the eIF2α-ATF4-CHOP signaling pathway and efficiently restore mitochondrial homeostasis in diabetic retina. J NANOBIOTECHNOL. 2025; J NANOBIOTECHNOL. doi: 10.1186/s12951-025-03929-3
[24].Chen, H, Liang, Y, Sun, X, et al. Generation of vascularized retinal organoids containing microglia based on a PDMS microwell platform. Sci Adv. 2025; 11 Sci Adv. doi: 10.1126/sciadv.ady6410
[25].Goldberg, RA, Mar, FA, Csaky, K, et al. Resolution of Angiographic Macular Leakage with Faricimab versus Aflibercept in Patients with Diabetic Macular Edema in YOSEMITE/RHINE. Ophthalmol Retina. 2025; 9 Ophthalmol Retina. doi: 10.1016/j.oret.2024.11.015
[26].Lim, JI, Amador, MJ, Dhoot, DS, et al. Anatomic Control with Faricimab versus Aflibercept in the YOSEMITE/RHINE Trials in Diabetic Macular Edema. Ophthalmol Retina. 2025; 9 Ophthalmol Retina. doi: 10.1016/j.oret.2025.01.017
[27].Peto, T, Pearce, I, Talks, J, et al. Real-world treatment patterns and visual outcomes of faricimab in patients with diabetic macular oedema in the UK at 12 months: the FARWIDE-DMO study. Eye (Lond). 2025; Eye (Lond). doi: 10.1038/s41433-025-04059-8
[28].Zhang, W, Cheng, S, Gu, X, et al. Simultaneous inhibition of fibroblast growth factor-2 and vascular endothelial growth factor-a with RC28-E in diabetic macular edema: a phase 2 randomised trial. Br J Ophthalmol. 2025; 109 Br J Ophthalmol. doi: 10.1136/bjo-2024-326006
[29].《中成药治疗优势病种临床应用指南》标准化项目组. 中成药治疗糖尿病视网膜病变临床应用指南(2024年)[J]. 中国中西医结合杂志,2025,45(08):901-909.
[30].中国医师协会中西医结合医师分会内分泌与代谢病专业委员会, 北京中西医结合学会内分泌专业委员会摘要. 糖尿病视网膜病变中西医结合防治指南[J]. 中华全科医学, 2025, 23(4): 543-550.
[31].世界中医药学会联合会. 国际中医临床实践指南:糖尿病视网膜病变. 世界中医药,2025,20(14):2427-2431.
[32].《复方丹参滴丸临床应用专家共识》编写项目组,戴小华. 复方丹参滴丸临床应用专家共识[J]. 中国中西医结合杂志,2025,45(5):517-525.
[33].Wen S, He X, Wang J et al. Endothelia-targeting eye drops deliver a STING inhibitor to effectively reduce retinal neovascularization in ischemic retinopathy. Biomaterials 2025; 323: 123424.
[34].Chen C, Zhu M, Fan X, et al. Continuous Suppression of Pathological Retinal and Choroidal Neovascularization in Cynomolgus Monkeys via Noninvasive Ophthalmic Delivery of a Novel Anti-VEGFA Nanobody and Proprietary Penetratin Analog Formulation. Adv Sci (Weinh). 2025. doi:10.1002/advs.202504660.
[35].Nguyen VP, Jeong J, Zheng M, et al. Long-Term Diabetic Retinopathy Treatment Using Silicon Nanoneedles. Small. 2025;21. doi:10.1002/smll.202410166.
[36].Hurst J, Adams F, Schnichels S. The Future of Nanomaterials Tackling the Challenge of Delivering Nucleic Acids to the Retina. Adv Funct Mater. 2025;35. doi:10.1002/adfm.202407173.
[37].Nafar H, Mahdavi Sharif P, Rezaei N. Advances in nanomedicine-based retinal drug delivery: mechanisms and translational applications. J Nanobiotechnol. 2025. doi:10.1186/s12951-025-03848-3.
[38].Guan, J, Meng, F, Wang, C, et al. Recent advances in engineered exosome-based therapies for ocular vascular disease. J Nanobiotechnology. 2025; 23 J Nanobiotechnology. doi: 10.1186/s12951-025-03589-3
[39].Sun, Y, Chen, S, Qi, X, et al. Engineered MEVs for photoreceptor-targeted delivery of USP25 to alleviate diabetic retinopathy. J Nanobiotechnology. 2025; 23 J Nanobiotechnology. doi: 10.1186/s12951-025-03671-w
[40].Chen KY, Chan HC, Chan CM. Can Gene Therapy Transform the Treatment Landscape of Posterior Segment Eye Diseases? Drugs. 2025. doi:10.1007/s40265-025-02237-2.
[41].Biber J, Gandor C, Becirovic E, et al. Retina-directed gene therapy: Achievements and remaining challenges. Pharmacol Ther. 2025;271:108862.
声明:本文仅供医疗卫生专业人士了解最新医药资讯参考使用,不代表本平台观点。该等信息不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议,如果该信息被用于资讯以外的目的,本站及作者不承担相关责任。
最新《国际糖尿病》读者专属微信交流群建好了,快快加入吧!扫描左边《国际糖尿病》小助手二维码(微信号:guojitnb),回复“国际糖尿病读者”,ta会尽快拉您入群滴!
(来源:《国际糖尿病》编辑部)
版权声明
版权属《国际糖尿病》所有。欢迎个人转发分享。其他任何媒体、网站未经授权,禁止转载。