<b><i>Introduction:</i></b> Somatostatin and dopamine (DA) receptors have a pivotal role in controlling hormone secretion and cell proliferation in different neuroendocrine neoplasms, including medullary thyroid cancer (MTC). In the present preclinical study, we evaluated the anti-tumor activity of TBR-065 (formerly BIM-23B065), a second-generation somatostatin-DA chimera, in 2 human MTC cell lines. <b><i>Methods:</i></b> The effects of lanreotide (LAN) and TBR-065 on cell growth and proliferation, calcitonin (CT) secretion, cell cycle, apoptosis, cell migration, and tumor-induced angiogenesis have been evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, DNA flow cytometry with propidium iodide (PI), Annexin V-FITC/PI staining, electrochemiluminescence immuno assay, wound-healing assay, and zebrafish platform, respectively. <b><i>Results:</i></b> TBR-065 exerted a more prominent anti-tumor activity than LAN in both MTC cell lines, as shown by inhibition of cell proliferation (maximal inhibition in TT: −50.3 and −37.6%, respectively; in MZ-CRC-1: −58.8 and −27%, respectively) and migration (in TT: −42.7 and −22.9%, respectively; in MZ-CRC-1: −75.5 and −58.2%, respectively). Only the new chimera decreased significantly the fraction of cells in S phase (TT: −33.8%; MZ-CRC-1: −18.8%) and increased cells in G2/M phase (TT: +13%; MZ-CRC-1: +30.5%). In addition, TBR-065 exerted a more prominent pro-apoptotic effect than LAN in TT cells. A concomitant decrease in CT secretion was observed after 2 days of incubation with both drugs, with a more relevant effect of TBR-065. However, neither LAN nor TBR-065 showed any effect on tumor-induced angiogenesis, as evaluated using a zebrafish/tumor xenograft model. <b><i>Discussion/Conclusion:</i></b> In MTC cell lines, a second-generation somatostatin-DA analog, TBR-065, exerts a more relevant anti-tumor activity than LAN, through modulation of cell cycle, induction of apoptosis, and reduction in migration. Further studies are required to establish whether TBR-065 has comparable potent inhibitory effects on tumor growth in vivo.