Global study of coastal seas as carbon dioxide reservoirs

2024-03-25
Coastal seas form a complex transition zone between the two largest CO2 sinks in the global carbon cycle: land and ocean. Ocean researchers have now succeeded for the first time in investigating the role of the coastal ocean in a seamless model representation. Coastal seas form a complex transition zone between the two largest CO2 sinks in the global carbon cycle: land and ocean. Ocean researchers have now succeeded for the first time in investigating the role of the coastal ocean in a seamless model representation. The team led by Dr. Moritz Mathis from the Cluster of Excellence for Climate Research CLICCS at Universität Hamburg and the Helmholtz-Zentrum Hereon was able to show: The intensity of CO2 uptake is higher in coastal seas than in the open ocean. This is evidenced by a study published in the journal Nature Climate Change. To counteract ongoing climate change, it is important to understand how CO2 emissions are distributed. And which exchange processes between the atmosphere, ocean and land regulate the distribution. Methodological developments in recent years have allowed for a more flexible inclusion of physical and biogeochemical processes in climate models and for capturing individual regions with higher resolution. Researchers from the Cluster of Excellence "Climate, Climatic Change, and Society" (CLICCS) have taken advantage of this. In collaboration between Helmholtz-Zentrum Hereon, Universität Hamburg, Max Planck Institute for Meteorology and University of Bern, they have developed a new type of ocean model that can efficiently simulate the transport, storage and turnover of carbon in the global coastal ocean for the first time: ICON-Coast. More realistic representation In computational climate science, land and ocean, the Earth's two major carbon reservoirs, have so far been considered separately. The transport of carbon into the coastal seas, for example via river inputs, coastal erosion and tidal flats, has been ignored. Coast-specific processes could only be considered in a limited and spatially coarse manner because climate models were developed for global scales. Due to the more realistic representation and higher resolution in the transition zone between land and ocean used in ICON-Coast, the model offers new possibilities to explore the effects of climate change on coastal areas and marine ecosystems, such as risks from heat waves, storms, or global sea level rise. The coastal ocean is small but significant It is known from observations that the increase in atmospheric CO2 concentration enhances the uptake of CO2 into the ocean, thereby significantly mitigating climate change. Simulations with ICON-Coast now shed light on the causes and enable understanding of the function of coastal and marginal seas in the Earth's climate dynamics: "Our analyses show that intense plankton growth is the key to enhanced CO2 uptake in the coastal ocean and that this uptake is higher than in the open ocean. This is due to climate-induced changes in the circulation and increasing nutrient inputs from rivers," says Dr Moritz Mathis, who led the study. The researchers also expect that the intensity difference between coastal seas and the open ocean will continue to strengthen further with ongoing CO2 emissions. All the more important: "Coastal management strategies that disturb biological production could weaken the ocean's CO2 uptake and make climate protection more difficult," emphasizes Mathis. "With the new model, we can also test approaches to CO2 avoidance such as offshore wind energy for their effectiveness and undesirable side effects."
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
适应症
-
靶点
-
药物
-
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。