PurposeRegenerative medicine is expected to offer an alternative to liver transplantation for treating liver diseases in the future, with one significant challenge being the establishment of an effective stem cell administration route. This study assessed the antifibrogenic effects of adipose-derived stem cells (ASCs) in a liver fibrosis mouse model, focusing on 2 methods of delivery: intravenous injection and scaffold implantation.MethodsAn extracellular matrix mimic scaffold was utilized for culturing peroxisome proliferator-activated receptor gamma coactivator 1-alpha-overexpressing ASCs (tASCs). These scaffolds, laden with tASCs, were then implanted subcutaneously in mice exhibiting liver fibrosis. In contrast, the Cell groups received biweekly intravenous injections of tASCs for 4 weeks. After 4 weeks, tissue samples were harvested from the euthanized mice for subsequent analysis.ResultsReal-time PCR and Western blot analyses on liver tissues, focusing on markers like alpha-smooth muscle actin (α-SMA), matrix metalloproteinase-2, and transforming growth factor-beta 1 (TGF-β1), showed that both delivery routes substantially lowered fibrotic and inflammatory markers compared to controls (P < 0.05), with no significant differences between the routes. Histological examinations, along with immunohistochemical analysis of α-SMA, collagen type I alpha, and TGF-β1, revealed that the scaffold implantation approach resulted in a greater reduction in fibrosis and lower immunoreactivity for fibrotic markers than intravenous delivery (P < 0.05).ConclusionThese findings indicate that delivering tASCs via a scaffold could be more effective, or at least similarly effective, in treating liver fibrosis compared to intravenous delivery. Scaffold implantation could offer a beneficial alternative to frequent intravenous treatments, suggesting its potential utility in clinical applications for liver disease treatment.