The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques-most notably choropleth maps-often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.