INTRODUCTION:Drug safety remains a top global public health concern. An increase in the number of data sources available has increased the complexity of pharmacovigilance operations, so the US FDA has created draft guidance focusing on optimizing drug safety data for well-characterized medicines. However, to date, no data demonstrating changes in reports have been presented.
OBJECTIVES:This study provided data assessing changes in individual case safety reports (ICSRs) and aggregate reports (ARs) for large biopharmaceutical companies from 2007 to 2017. This study also evaluated current trends on the use of advanced machine and deep learning in order to process all data captured for ICSRs as well as opinions from industry thought leaders on creating a sustainable case-processing operation.
METHODOLOGY:Using data captured from Navitas Life Science's annual pvnet® benchmark, we calculated workload indicators characterizing pharmacovigilance operations for large biopharmaceutical organizations. Workload indicators included the number of ICSRs by organization, the number of ARs, and the number and types of data sources used. We also conducted structured in-depth interviews with seven biopharmaceutical executives to discover the reasons for changes in workload indicators across time as well as current strategies for increasing efficiencies in drug safety reporting.
RESULTS:The median number of ICSRs increased from 84,960 cases in 2007 to over 200,000 cases in 2017; this increase was largely attributable to an increase in both nonserious cases and follow-up cases. Member companies reported using 12 ± 3 data sources for case identification. The number of ARs also increased from a median of 70 reports in 2007 to 258 reports in 2017. To address these increases, 61% of the biopharmaceutical organizations we surveyed planned to adopt machine learning for full ICSR processing; however, as of 2018, none of the organizations surveyed had mechanisms in place.
CONCLUSION:This study demonstrated that pharmacovigilance departments are currently burdened by ever-increasing case volumes. With increased guidance from regulatory agencies, as well as improvements in artificial intelligence and natural language processing, biopharmaceutical organizations must determine the most resource-efficient and sustainable methods to process the growing volume of cases.