Abstract:Flexible electronics face critical challenges in achieving monolithic three-dimensional (3D) integration, including material compatibility, structural stability, and scalable fabrication methods. Inspired by the tactile sensing mechanism of the human skin, we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste, where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor. The in-plane mesopores of MXene significantly improve ion accessibility, mitigate the self-stacking of nanosheets, and allow the holey MXene to multifunctionally act as a sensing material, an active electrode, and a conductive interconnect, thus drastically reducing the interface mismatch and enhancing the mechanical robustness. Furthermore, we fabricate a large-scale device using a blade-coating and stamping method, which demonstrates excellent mechanical flexibility, low-power consumption, rapid response, and stable long-term operation. As a proof-of-concept application, we integrate our sensing array into a smart access control system, leveraging deep learning to accurately identify users based on their unique pressing behaviors. This study provides a promising approach for designing highly integrated, intelligent, and flexible electronic systems for advanced human–computer interactions and personalized electronics.