Zhi-Ke-Bao pills (ZKB), a traditional Chinese medicine preparation composed of 13 herbs, is generally used to treat cough caused by external wind cold, phlegm, etc in clinical applications, and it plays a core role in relieving cough caused by COVID-19 and influenza in China. Till now, the understanding of its chemical constituents was dramatically limited due to its chemical complexity, restricting its clinical application or development. In this work, a developed ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) method, a targeted and non-targeted strategy and network pharmacology were used to comprehensively characterize the chemical compositions in ZKB and predict its mechanism against cough. A total of 164 compounds (148 targeted compounds and 16 non-targeted ones) were identified or tentatively characterized in ZKB, including 65 flavonoids, 25 alkaloids, 19 organic acids, 41 saponins, 9 coumarins, 2 phenylpropanoids, 2 anthraquinones, and 1 other types. Among them, 37 compounds were unambiguously identified by comparison to reference standards. Meanwhile, the fragmentation behaviors of five main chemical structure types were also summarized. 309 targets and two core signaling pathways of ZKB against cough were predicted by network pharmacology, including MAPK and PI3K-Akt signaling pathways. It was the first time to characterize the chemical compounds of ZKB and reveal its potential mechanism against cough, providing the material basis for further quality control or pharmacodynamic evaluation of ZKB.