BackgroundDepression increases the risk of breast cancer recurrence and metastasis. However, there lacks potential biomarkers for predicting prognosis in breast cancer. 5-hydroxytryptamine (5-HT) plays a key role in the pathogenesis and treatment of depression. In this study, we developed a prognostic signature based on 5-HT receptors (5-HTRs) and elucidated its potential immune regulatory mechanisms for breast cancer prognosis.MethodsOncomine, GEPIA, UALCAN, cBioPortal, Kaplan-Meier plotter, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of HTRs in breast cancer patients. The model training and validation assays were based on the analyses of GSE1456 and GSE86166. A risk signature was established by univariate and multivariate Cox regression analyses. The transwell assay was utilized to verify the effect of the 5-HTRs expression on breast cancer invasion. Effects of HTR2A/2B inhibitor on CD8+ T cell proliferation and infiltration as well as apoptosis of 4T1 cells in the tumor microenvironment were detected by flow cytometry and TUNEL assay. Zebrafish and mouse breast cancer xenografts were used to determine the effect of HTR2A/2B inhibitor on breast cancer metastasis.ResultsThe expression levels of HTR1A, HTR1B, HTR2A, HTR2B, HTR2C, HTR4, and HTR7 were significantly downregulated in highly malignant breast cancer types. 5-HTRs were significantly associated with recurrence-free survival (RFS) in breast cancer patients. The genetic alteration of HTR1D, HTR3A, HTR3B, and HTR6 in breast cancer patients was significantly associated with shorter overall survival (OS). Finally, HTR2A and HTR2B were determined to construct the risk signature. The expression of HTR2A/2B was positively correlated with the infiltration of immune cells such as CD8+ T cells and macrophages. Furthermore, inhibition of HTR2A expression could suppress CD8+ T cell proliferation and enhance invasion and metastasis of breast cancer cells in both zebrafish and mice model.ConclusionsThe HTR2A/2B risk signature not only highlights the significance of HTRs in breast cancer prognosis by modulating cancer immune microenvironment, but also provides a novel gene-testing tool for early prevention of depression in breast cancer patients and lead to an improved prognosis and quality of life.