Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B.