A dipeptide-based bifunctional material immobilized with Ti4+ (denoted as APE-MBA-VPA-Ti4+) was developed using precipitation polymerization. This polymer combines hydrophilic interaction liquid chromatography (HILIC) and immobilized metal affinity chromatography (IMAC) enrichment strategies, allowing for the individual and simultaneous enrichment of glycopeptides and phosphopeptides. It demonstrated high sensitivity (0.1 fmol μL-1 for glycopeptides, 0.005 fmol μL-1 for phosphopeptides), strong selectivity (molar ratio HRP: BSA = 1:1000, β-casein: BSA = 1:2500), consistent reusability (10 cycles) and satisfactory recovery rate (93.5 ± 1.8 % for glycopeptides, 91.6 ± 0.6 % for phosphopeptides) in the individual enrichment. Utilizing nano LC-MS/MS technology, the serum of liver cancer patients was analyzed after enrichment individually, resulting in the successful capture of 333 glycopeptides covering 262 glycosylation sites, corresponding to 131 glycoproteins, as well as 67 phosphopeptides covering 57 phosphorylation sites, related to 48 phosphoproteins. In comparison, the serum of normal healthy individuals yielded a total of 283 glycopeptides covering 244 glycosylation sites corresponding to 126 glycoproteins, as well as 66 phosphopeptides covering 56 phosphorylation sites related to 37 phosphoproteins. Label-free quantification identified 10 differentially expressed glycoproteins and 8 differentially expressed phosphoproteins in the serum of liver cancer patients. Among them, glycoproteins (HP, BCHE, AGT, C3, and PROC) and phosphoproteins (ZYX, GOLM1, GP1BB, CLU, and TNXB) showed upregulation and displayed potential as biomarkers for liver cancer.