Cytiva智荟专线400-810-9118,2号键#智荟锦囊循环肿瘤细胞CTCs简介1869年,Ashworth,T.R等【1】首次在一例转移性肿瘤患者血液中观察到循环肿瘤细胞(Circulating Tumor Cells, CTCs)。CTCs即是指从原发肿瘤或转移灶脱落,进入血液循环系统的肿瘤细胞【2】,如图1。图1:循环肿瘤细胞CTCs进入血液循环原发肿瘤释放CTCs进入循环中,大部分CTCs死亡,但是少部分CTCs存活并在远端形成转移灶【9】。每天每g原位瘤可能会释放多达百万的肿瘤细胞进入血液循环【3】,但大部分因血流剪切力、失巢凋亡、免疫系统识别【4】而被清除,只有极少数(0.01%)【4】【5】存活下来,通过血液或淋巴到达远端器官形成新的转移灶,是肿瘤转移(Metastasis)和复发的重要生物学基础之一。因此,CTCs是肿瘤精准医疗的重要靶点【6】,作为液体活检(其它如cfDNA、cfRNA、microRNA、外泌体、肿瘤代谢物)重要组成之一,其完整细胞的特有属性,允许通过表型、基因型(如单细胞测序)、细胞功能以及异种移植模型,用于肿瘤早期诊断、疾病进展、复发检测、转移癌监控、肿瘤亚型改变、耐药性研究以及预后评估【7】,促进个体化治疗实施。此外,CTCs携带了肿瘤的基因组、转录组和代谢组等多组学信息,可用于研究肿瘤微环境、转移微环境PMN、免疫逃逸机制,还可用于培养类器官【8】进行体外药物筛选和检测。CTCs的分离方法CTCs的分离方法,主要分为非标记法和标记法,如图2。图2:CTCs分离、培养和分析方法【10】非标记法主要依赖CTCs自身的物理性质,如大小、密度、粘附、介电性质和变形性【11】【12】。被广泛使用的Cytiva Ficoll-Paque 和Percoll分离液即基于密度分离。大小和变形性等则常用于微流控技术【13】。标记法主要为阳性富集(如上皮细胞粘附分子EpCAM【14】、HER2、束丝蛋白3【15】、前列腺特异性抗原PSA【16】等或Cocktail)和阴性富集(如CD45抗体去除白细胞、CD61去除血小板和巨核细胞【17】、CD14等或Cocktail)。基于抗EpCAM免疫磁珠技术的CellSearch CTC Test方法,是目前唯一被美国FDA批准作为肿瘤预后评估工具用于转移性乳腺癌(2004年)【18】、结直肠癌(2007年)【19】和前列腺癌(2008年)【20】。中国CFDA在2012年批准了CellSearch系统用于转移性乳腺癌的预后评估。其它本土获批产品包括CytoSorter循环肿瘤细胞检测系统等,更多检测方法也在兴起和验证中。CTCs的分离也可以联合非标记和标记法【21】,并受到肿瘤类型的影响【17】。但是,CTCs分离仍面临挑战:肿瘤细胞本身即具有异质性。并且,CTCs因上皮-间质转化(Epithelial-Mesenchymal Transition, EMT)失去极性和黏附性,获得更强的迁移和侵袭能力,与基质互作并抵抗治疗,同时表现出上皮和间质表型【22】,也造成细胞表面Marker的动态变化。此外,CTCs还会和血液中其它细胞如白细胞形成CTC微血栓促进自身生存和转移。CTCs在血液中的密度很低,~1-10 CTCs/mL血液【10】,分离富集挑战大。一般,转移性癌症中每10 mL血液中有0-100个单体CTCs以及0-5个CTCs Cluster(CTCs簇),并与癌症类型、血液收集位置以及治疗阶段有关【23】。CTCs半衰期通常只有 1.0‑2.4 h【24】。使用密度梯度离心法分离CTCs早在1959年,Seal SH等【25】即使用硅油配制密度梯度离心介质,分离血液中的游离肿瘤细胞。目前,商品化的梯度介质,如Cytiva的Ficoll-Paque进行CTCs的分离,在临床研究中被广泛使用【21】【26】【27】【28】。作为非标记的分离方法,利于富集表面Marker表达异质性CTCs以及未知CTCs亚型,操作简单、低成本、快速,处理通量大。使用密度梯度介质分离CTCs,文献报道中主要包括4种方法:常规标准操作、抗体预先结合杂质细胞、抗体预先结合CTCs目的细胞,以及使用Percoll不连续密度梯度进行分离。使用Ficoll-Paque进行CTCs分离的常规操作根据斯托克斯定律,如图3,颗粒的沉降速率v,和颗粒直径(d)、样品密度(ρp)和溶液密度(ρl)之差成正比;与溶液的粘稠度(η)成反比。当不同细胞经过同一密度离心介质,不同颗粒直径和密度的细胞,沉降速率不同,从而被分开。外周血中,红细胞、粒细胞密度大【38】如图6,穿过Ficoll-Paque密度梯度介质(1.077 g/mL)沉于底层;外周血单个核细胞PBMCs和CTCs密度小,一起停留在白膜层(buffy coat)中,最上面是血浆。后续可以使用阳性富集【29】或阴性富集(如anti-CD45磁珠去除白细胞)【30】【39】进一步回收CTCs。图3:颗粒沉降速率公式【31】Ficoll-Paque密度梯度介质标准操作及细胞分布,请参考文章:☞ Ficoll-Paque应用解析:PBMCs分离中病人样本的特殊性抗体结合杂质细胞后,再使用密度梯度介质分离CTCs在密度梯度分离之前,进行杂质细胞预标记,促进其沉降。例如采用anti-CD45(白细胞共同抗原)【8】【32】【33】、anti-66b(粒细胞)与样品进行孵育,使白细胞与红细胞形成免疫玫瑰花状结构,密度和大小增加,在后续密度梯度离心过程中,将白细胞群拉到管底,则在白膜层可以回收更纯的CTCs,如图4,少量CTCs可能会渗漏到血浆层,也可以一起回收【6】【32】。相对于阳性筛选,基于去除白细胞的阴性筛选更有优势,避免了使用抗体激活CTCs以及某些CTCs因为不表达相应的抗原而被遗漏【32】。图4:使用Ficoll-Paque 密度梯度介质,分离CTCs将血液和白细胞抗体如RosetteSep抗体孵育,使用DPBS+2% FBS稀释血样,然后小心地铺到Ficoll-Paque 密度梯度介质上面,离心(关闭刹车)后在白膜层收获CTCs【32】。抗体结合目的CTCs后,再使用密度梯度介质分离CTCs在密度梯度分离之前,进行CTCs目的细胞预标记,促进其沉降。Huang Q等【34】使用同时偶联anti‑EpCAM抗体和anti‑CD146抗体(后者作为肿瘤标志物以及上皮间质转化EMT诱导剂,利于捕获EpCAM无/低表达间质CTCs)的SiO2微珠(表面包被可降解明胶),先和血样孵育以结合CTCs,之后将样品铺在Cytiva Percoll密度梯度介质(配制成1.15 g/mL)的表面,离心,CTCs结合在微珠表面而沉降于管底,之后酶解表层明胶释放CTCs,结果显示CTCs收率>80%,纯度大于85%,如图5。也可以使用Ficoll-Paque密度梯度介质,采用类似方法离心沉降CTCs目的细胞,收集管底组分并裂红,回收CTCs。图5:基于微珠和密度梯度介质进行CTCs分离(部分图片)A:通过可降解明胶包被的微珠(偶联了anti-EpCAM和anti-CD146抗体),高效吸附CTCs。 B:经过Percoll密度梯度离心,将结合CTCs的二氧化硅微珠沉淀到管底,从而和血细胞分离。C:通过基质金属蛋白酶MMP-9酶解明胶,释放结合在微珠表面的CTCs。除了CTCs单细胞外,CTC Cluster【35】以及CTCs与其它血液成分组成的细胞团,往往具有更高的转移潜能。由于细胞团的密度更大,容易在离心后沉降,也可以采用类似方法进行分离,或使用Cluster-Chip【36】。 另外,具有干性的CTCs,即循环癌干细胞(Circulating Cancer Stem Cells,CCSCs)同样值得关注。使用Percoll不连续密度梯度分离CTCs此外,也可以将Percoll密度梯度介质,配制成多个不连续密度梯度,以便将杂质细胞拦截在不同的密度梯度中,CTCs则集中在夹层中,利于回收【37】。Cytiva有两种产品可供选择:Percoll于1978年发布,为聚乙烯吡咯烷酮(PVP)涂层二氧化硅胶体介质,适用于科研;Percoll PLUS于2006年推出,是共价偶联烷硅涂层二氧化硅胶体介质,具有低水平的内毒素,提供法规支持文件,适用于临床研究。具体的密度梯度配制,可以参考Boyum, A等【38】绘制出的外周血各个细胞组分的密度分布,如图6。图6:人外周血中细胞密度分布图Percoll密度梯度配制方法,请参考文章:☞ 智荟锦囊之Percoll分离液配制指南细胞分离液相关产品文章内相关中文数据文件和操作说明,如Ficoll-Paque PLUS、不同浓度的Ficoll-Paque PREMIUM、Percoll以及Percoll PLUS产品等欢迎扫描下方二维码即刻下载如果大家对产品和技术感兴趣,欢迎拨打智荟专线:智荟专线:400-810-9118(转1号线询价购买或2号线技术支持)相关阅读:☞Ficoll-Paque应用解析:PBMCs分离中病人样本的特殊性☞Ficoll-Paque应用解析:间充质干细胞的分离参考文献1. Ashworth, T.R. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust. Med. J. 1869, 14, 146–149.2. Prasanna BK, Balakrishnan A and Kumar P: Circulating tumor cell clusters and circulating tumor cell derived explant models as a tool for treatment response. Biotechniques 69: 362 363, 2020.3. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14608-13. doi: 10.1073/pnas.97.26.14608. PMID: 11121063; PMCID: PMC18966.4. Tayoun T, Faugeroux V, Oulhen M, Aberlenc A, Pawlikowska P and Farace F: CTC derived models: A window into the seeding capacity of circulating tumor cells (CTCs). Cells 8: 1145, 20195. Leone K, Poggiana C and Zamarchi R: The interplay between circulating tumor cells and the immune system: From immune escape to cancer immunotherapy. Diagnostics (Basel) 8: 59, 2018.6. Mahmoud Labib 1, Shana O Kelley. Circulating tumor cell profiling for precision oncology. Mol Oncol. 2021 Feb 1;15(6):1622–1646.7. Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O'Rourke MA, Lew DL, Doyle GV, Gralow JR, Livingston RB, Hayes DF. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol. 2014 Nov 1;32(31):3483-9. doi: 10.1200/JCO.2014.56.2561. Epub 2014 Jun 2. PMID: 24888818; PMCID: PMC4209100.8. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, Wongvipat J, Kossai M, Ramazanoglu S, Barboza LP, Di W, Cao Z, Zhang QF, Sirota I, Ran L, MacDonald TY, Beltran H, Mosquera JM, Touijer KA, Scardino PT, Laudone VP, Curtis KR, Rathkopf DE, Morris MJ, Danila DC, Slovin SF, Solomon SB, Eastham JA, Chi P, Carver B, Rubin MA, Scher HI, Clevers H, Sawyers CL, Chen Y. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014 Sep 25;159(1):176-187. doi: 10.1016/j.cell.2014.08.016. Epub 2014 Sep 4. PMID: 25201530; PMCID: PMC4237931.9. Ruchi Agashe, Razelle Kurzrock. Circulating Tumor Cells: From the Laboratory to the Cancer Clinic. Cancers (Basel). 2020 Aug 21;12(9):2361.10. Xiuxiu Hu 1, Xiaojuan Zang 2, Yanguan Lv 3. Detection of circulating tumor cells: Advances and critical concerns (Review). Oncol Lett. 2021 May;21(5):422.11. Chudziak J, Burt DJ, Mohan S, et al. Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst 2016;141:669-78.12. Mehdi Rahmanian 1, Omid Sartipzadeh Hematabad 2, Esfandyar Askari, et al. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? J Adv Res. 2023 May:47:105-121.13. Tyler A Allen. The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel). 2024 Mar 31;16(7):1377.14. Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol 2016;10:374-94.15. Yokobori T, Iinuma H, Shimamura T, Imoto S, Sugimachi K, Ishii H, Iwatsuki M, Ota D, Ohkuma M, Iwaya T, Nishida N, Kogo R, Sudo T, Tanaka F, Shibata K, Toh H, Sato T, Barnard GF, Fukagawa T, Yamamoto S, Nakanishi H, Sasaki S, Miyano S, Watanabe T, Kuwano H, Mimori K, Pantel K, Mori M. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 2013 Apr 1;73(7):2059-69. doi: 10.1158/0008-5472.CAN-12-0326. Epub 2013 Feb 1. PMID: 23378342.16. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014 Mar;11(3):129-44. doi: 10.1038/nrclinonc.2013.253. Epub 2014 Jan 21. PMID: 24445517.17. 中华医学会检验医学分会分子诊断学组. 循环肿瘤细胞临床应用与实验室检测专家共识.中华检验医学杂志 2021 年11 月第 44 卷第 11 期.18. Hayes DF, Cristofanilli M, Budd GT et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12(14 Pt 1), 4218–4224 (2006).19. Cohen SJ, Punt CJ, Iannotti N et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(19), 3213–3221 (2008).20. de Bono JS, Scher HI, Montgomery RB et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14(19), 63026309 (2008).21. Yali Wang 1, Yucheng Zhang, Zhenwu Du, et al. Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine. 2012:7:2315-24.22. De T, Goyal S, Balachander G et al. A novel ex vivo system using 3D polymer scaffold to culture circulating tumor cells from breast cancer patients exhibits dynamic E-M phenotypes. J.Clin. Med. 8(9), 1473 (2019).23. Au SH, Edd J, Haber DA, Maheswaran S, Stott SL and Toner M: Clusters of circulating tumor cells: A biophysical and techno¬logical perspective. Curr Opin Biomed Eng 3: 13 19, 201724. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, et al: Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10: 8152 8162, 2004.25. SEAL SH. Silicone flotation: a simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer. 1959 May-Jun;12(3):590-5. doi: 10.1002/1097-0142(195905/06)12:3<590::aid-cncr2820120318>3.0.co;2-n. PMID: 13652106.26. Zahra Eslami-S, Luis Enrique Cortés-Hernández, Frédéric Thomas, et al. Functional analysis of circulating tumour cells: the KEY to understand the biology of the metastatic cascade. Br J Cancer. 2022 Sep;127(5):800-810.27. Wan Shi Low, Wan Abu Bakar Wan Abas. Benchtop Technologies for Circulating Tumor Cells Separation Based on Biophysical Properties. Biomed Res Int. 2015:2015:239362.28. Yap K, Cohen EN, Reuben JM and Khoury JD: Circulating tumor cells: State of the art update on technologies and clinical applications. Curr Hematol Malig Rep 14: 353 357, 2019.29. Fizazi K, Morat L, Chauveinc L, Prapotnich D, De Crevoisier R, Escudier B, et al. High detection rate of circulating tumor cells in blood of patients with prostate cancer using telomerase activity. Ann Oncol. 2007;18(3):518–521. doi: 10.1093/annonc/mdl419.30. Morgan TM, Lange PH, Vessella RL. Detection and characterization of circulating and disseminated prostate cancer cells. Front Biosci. 2007 May 1;12:3000-9. doi: 10.2741/2290. PMID: 17485277.31. Methodology and applications Cell separation media. CY14836-24Jan21-HB.32. Alexandra Soler, Laure Cayrefourcq, Martine Mazel, et al. EpCAM-Independent Enrichment and Detection of Viable Circulating Tumor Cells Using the EPISPOT Assay. Methods Mol Biol. 2017:1634:263-276.33. Drucker A, Teh EM, Kostyleva R, Rayson D, Douglas S and Pinto DM: Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One 15: e0237308, 2020.34. Huang Q, Wang FB, Yuan CH, He Z, Rao L, Cai B, Chen B, Jiang S, Li Z, Chen J, et al: Gelatin nanoparticle coated silicon beads for density selective capture and release of heteroge¬neous circulating tumor cells with high purity. Theranostics 8: 1624 1635, 2018.35. Danova M, Torchio M, Mazzini G. Isolation of rare circulating tumor cells in cancer patients: technical aspects and clinical implications. Expert Rev Mol Diagn 2011;11:473-85.36. Sarioglu AF, Aceto N, Kojic N, et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015 Jul;12(7):685-91. doi: 10.1038/nmeth.3404. Epub 2015 May 18. PMID: 25984697; PMCID: PMC4490017.37. Wenjun Le, Shuyuan Hu, Pengbo Zhang, et al. Capture of live circulating tumor cells via unique surface charges from cancer patients by a novel nanotechnology. Interdiscip. Med. 2024, 2, e20240045.38. Bøyum A, Løvhaug D, Tresland L, Nordlie EM. Separation of leucocytes: improved cell purity by fine adjustments of gradient medium density and osmolality. Scand J Immunol. 1991 Dec;34(6):697-712. doi: 10.1111/j.1365-3083.1991.tb01594.x. PMID: 1749920.39. Gakhar G, Navarro VN, Jurish M, Lee GY, Tagawa ST, Akhtar NH, Seandel M, Geng Y, Liu H, Bander NH, Giannakakou P, Christos PJ, King MR, Nanus DM. Circulating tumor cells from prostate cancer patients interact with E-selectin under physiologic blood flow. PLoS One. 2013 Dec 27;8(12):e85143. doi: 10.1371/journal.pone.0085143. PMID: 24386459; PMCID: PMC3874033. 本期关键词:#FicollPaque