2025
天然多糖通过微生物-肠-脑轴
缓解抑郁症的作用机制与治疗潜力
中草药 2025 年 10 月 第 56 卷 第 19 期
Chinese Traditional and Herbal Drugs
2025 October Vol. 56 No. 19
吕志远 1,曹玲玲 2,游佩进 1,郝 娟 1,李文惠 1,宋建忠 3*,杨朝竣 1*
1. 新疆华春生物药业研发中心,新疆 乌鲁木齐 830011
2. 新疆心脑血管病医院,新疆 乌鲁木齐 830011
3. 新疆医科大学附属肿瘤医院 药学部,新疆 乌鲁木齐 830011
摘 要:抑郁症是全球疾病负担最重的精神障碍之一,其临床治疗目前仍面临治疗反应率低和传统药物不良反应较多等挑
战。近年来,微生物-肠-脑轴(microbiota-gut-brain axis,MGBA)研究的进展表明,肠道菌群及其生物活性代谢产物可通过整合神经-内分泌-免疫通路,对神经系统功能起到关键调控作用,为抑郁症干预提供了新靶点。通过对可调节肠道菌群的天然多糖及其改善抑郁症的研究进行综述,系统阐释多糖经由 MGBA 介导的多模式抗抑郁机制,为推进抑郁症防治策略提供新见解。
关键词:天然多糖;微生物-肠-脑轴;抑郁症;肠道菌群;短链脂肪酸
中图分类号:R285 文献标志码:A 文章编号:0253 - 2670(2025)19 - 7222 - 15
DOI:10.7501/j.issn.0253-2670.
2025.19.031
Mechanisms and therapeutic potential of natural polysaccharides in alleviating depression via microbiota-gut-brain axis
LYU Zhiyuan1 , CAO Lingling2 , YOU Peijin1 , HAO Juan1 , LI Wenhui1 , SONG Jianzhong3 , YANG Zhaojun1
1 Xinjiang Huachun Biopharmaceutical R & D Center, Urumqi 830011, China
2 Xinjiang Cardiovascular and Cerebrovascular Hospital, Urumqi 830011, China
3 Department of Pharmacy, the Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, China
Abstract: Depression is one of the most burdensome mental disorders worldwide, and its clinical management still faces challenges such as low treatment response rates and frequent adverse effects associated with conventional pharmacological agents. Recent advances in the study of microbiota-gut-brain axis (MGBA) have revealed that gut microbiota and their bioactive metabolites play a key regulatory role in neurological function by integrating neuro-endocrine-immune pathways, thereby offering novel targets for intervention in depression. This review summarizes current research on natural polysaccharides that modulate the gut microbiota and alleviate depression, systematically elucidating the multi-modal antidepressant mechanisms mediated via MGBA, and provides new insights for advancing strategies for the prevention and treatment of depression.
Key words: natural polysaccharides; microbiota-gut-brain axis; depression; gut microbiota; short-chain fatty acids
抑郁症是一种复杂的神经精神疾病,具有高致残率、自杀相关死亡风险增加和早逝等特点,已成为全球重大公共卫生问题[1]。其核心临床表现包括持续性快感缺失、认知功能障碍和情绪低落,常伴有食欲紊乱、睡眠结构破坏和精神运动迟滞等躯体症状[2]。除神经精神表现外,抑郁症还可引发肠道屏障损伤、神经免疫失调和神经退行性病变等[3]。尽管现有循证医学证据表明抗抑郁药物联合心理治疗对抑郁症具有临床疗效,但该综合干预模式的
效果普遍处于中等水平,且不同个体间存在反应异质性[4-5]该病的病因学复杂性源于以下病理机制的交汇:(1)单胺类神经递质 [多巴胺、5-羟色胺 (5-hydroxytryptamine , 5-HT )、 去 甲 肾 上 腺 素(noradrenaline,NE)]失衡;(2)下丘脑-垂体-肾上腺 (hypothalamic-pituitary-adrenal,HPA)轴功能障碍伴皮质醇分泌亢进;(3)小胶质细胞介导的神经炎症;(4)线粒体氧化应激级联反应;(5)海马神经可塑性缺陷 (图 1)[6-11]。这些相互关联的通路构成了病理生理网络,对传统单靶点药物治疗提出了挑战。此外,合成抗抑郁药物的长期使用可能引发代谢并发症和器官毒性,促使研究转向具有多靶点调节能力和良好安全性的天然化合物。
图 1 抑郁症的多维病理机制
Fig. 1 Multidimensional pathological mechanisms involved in depression
最新研究阐明了肠道菌群在抑郁症发病机制中的关键作用。人类胃肠道内由细菌、古菌、真菌和病毒组成的复杂微生物群落,统称为第 2 基因组[12-14]。这一动态生态系统通过微生物-肠-脑轴 (microbiota gut-brain axis,MGBA)与中枢神经系统(central nervous system,CNS)进行双向交流,为抑郁症病
因学提供了新的机制解释。临床研究显示抑郁症患者存在肠道菌群失调,其特征为短链脂肪酸 (short chain fatty acid,SCFA)生成减少和 Toll 样受体 4(Toll-like receptor 4,TLR4)/核因子-κB(nuclear factor-κB,NF-κB)介导的神经炎症激活[15-17]。值得注意的是,肠道微生物不仅能合成可直接进行神经信号传导的神经活性代谢物,还能调节脑源性神经营养因子 (brain-derived neurotrophic factor,BDNF)表达和神经递质受体谱[18-19]。这些发现使 MGBA 成为抑郁症治疗的重要靶点。
多糖作为普遍存在的天然大分子,不仅具有抗炎、免疫调节和抗氧化等生物活性,还能通过选择 性调节肠道菌群发挥益生元作用[20-21]。微生物对多糖的代谢可产生 SCFA,后者通过迷走神经和循环途径增强肠道屏障完整性、调节免疫稳态并发挥神经保护作用[22-23]。现有证据证实多糖可通过菌群依赖性机制改善抑郁行为,包括 HPA 轴功能正常化、神经炎症抑制和海马神经发生增强等[24-27]。因此本文系统性地聚焦于天然多糖这一类物质,旨在梳理其通过 MGBA 干预抑郁症的独特多维机制。(1)多糖介导的肠道菌群重塑;(2)多糖的微生物代谢转化;(3)MGBA 介导的神经精神效应;(4)多糖的临床应用与现存问题,为开发靶向菌群的抗抑郁策略提供理论框架。
1 数据来源与检索
文献检索以 PubMed、Web of Science、CNKI 和万方数据知识服务平台。95%以上的文献来自 2015年 1 月—2025 年 4 月,以涵盖过去 10 年内的最新研究进展。仅纳入中英文原创研究及综述,排除会 议摘要、非公开发表数据及非多糖类研究。检索采用主题词与自由词相结合的方式,主要检索词为“抑郁症”“多糖”“微生物-肠-脑轴”“短链脂肪酸”“有关抑郁症多糖临床研究”等。
2 肠道菌群与抑郁症的关联概述
2.1 肠道菌群微环境与抑郁症
健康成人肠道内有着复杂的微生物群落,包括厚壁菌门 (Firmicutes)、拟杆菌门 (Bacteroidetes)、变 形 菌 门 ( Proteobacteria ) 和 放 线 菌 门(Actinobacteria)、和古菌、真菌、病毒及微真核生物。其中厚壁菌门与拟杆菌门占主导地位(约 90%),其次为变形菌门和放线菌门,而梭杆菌门与疣微菌门约占 10%[28-30]。对维持代谢、免疫及神经功能稳
态至关重要的核心有益菌群包括双歧杆菌属、乳杆菌属Lactobacillus、拟杆菌属 Bacteroides[31-32]。研究发现抑郁症患者的肠道菌群呈现显著失调。在门水平上,厚壁菌门丰度普遍降低,而拟杆菌门、变形菌门和放线菌门比例升高。在科水平上,酸氨基球菌科、理研菌科、卟啉单胞菌科和肠杆菌科
(Enterobacteriaceae)丰度高于健康样本,而拟杆菌科、瘤胃菌科、毛螺菌科 (Lachnospiraceae)、普雷沃菌科和丹毒丝菌科 (Erysipelotrichaceae)则减少。在属水平上,促炎菌群过度增殖,而抗炎菌群丰度下降[33-35] (图 2)。多项临床数据表明,抑郁症的菌群特征表现为促炎/条件致病菌过度增殖与有益菌耗竭的共同模式。这种失调通过以下机制最终导致神经炎症和突触可塑性损伤:SCFA 合成受阻、色氨酸-犬尿氨酸代谢途径偏移加剧,及 TLR4/NF-κB通路激活[36-41]。
图 2 健康个体与抑郁症患者肠道菌群变化
Fig. 2 Changes in gut microbiota between healthy individuals and patients with depression
2.2 MGBA 在抑郁症发病机制中的作用
胃肠道凭借其在营养代谢、免疫调节和神经内分泌信号传导中的核心作用被誉为第 2 大脑[42-43]。其与 CNS 的双向通讯机制正式命名为肠-脑轴[44-45]。这种多向交互通过神经、免疫及代谢通路实现肠-脑间的双向通讯[46-47]。作为副交感神经信号传递的关键通道,迷走神经不仅介导从情绪调节到免疫稳态等基础生理过程,同时接收肠道菌群代谢产物的调控信号[48-49]。最新证据表明,肠道微生物通过直接神经内分泌刺激和间接自主神经系统调控影响CNS 活动,其中微生物代谢产物、内分泌因子和免疫调节分子是主要介质[50-53]。抑郁症的发病机制与微生物代谢紊乱密切相关,尤其是 SCFA 生成减少和色氨酸代谢异常[54-55]。SCFA 由膳食纤维经厌氧菌发酵产生,占结肠脂肪酸总质量分数的 90%以上[56-57]。丁酸通过抑制组蛋白去乙酰化酶发挥神经保护作用,能增强海马 BDNF的表达和突触可塑性;丙酸则通过游离脂肪酸受体 2介导的机制维持血脑屏障完整性[58-60]。值得注意的是,95%的 5-HT 合成发生于肠嗜铬细胞,其合成前体色氨酸的生物利用度高度依赖微生物调控。菌群失调导致的色氨酸-5-HT 转化障碍会破坏单胺能神经传递,成为抑郁症状发生的关键通路。慢性神经炎症是抑郁症发病的典型特征。肠道屏障损伤导致脂多糖和微生物相关分子模式发生全身性核转位,通过激活模式识别受体引发促炎因子风暴[61-63]。这种炎症微环境破坏血脑屏障完整性,促使小胶质细胞活化并转化为促炎性 M1 表型。活化的小胶质细胞释放活性氧和兴奋性毒素,通过氧化应激和谷氨酸能失调的联合作用,诱发前额叶皮质和海马神经退行性病变[64-65]。同时出现的 HPA 轴功能亢进表现为促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)/皮质酮水平升高和 BDNF 表达抑制,形成神经内分泌功能障碍与神经可塑性损伤的恶性循环(图 3)[66]。
GABA-γ-氨基丁酸;CRH-促肾上腺皮质激素释放激素;ZO-1-闭锁小带蛋白-1;TNF-α-肿瘤坏死因子-α;IL-1β-白细胞介素-1β。
GABA-γ-aminobutyric acid; CRH-corticotropin releasing hormone; ZO-1-zonula occludens-1; TNF-α-tumor necrosis factor-α; IL-1β-interleukin-1β.
图 3 MGBA 介导抑郁症的致病机制
Fig. 3 Pathogenic mechanisms of depression mediated by MGBA
3 天然多糖的特性及其对肠道菌群的调控作用
3.1 维持肠道菌群生态平衡
多糖难以被宿主基因组编码的酶类降解,但肠道菌群分泌的降解酶可分解多糖,促进其被宿主消化吸收。不可消化多糖经肠道菌群发酵后生成SCFA 不仅能为肠上皮细胞提供能量,促进其增殖
并维持肠道屏障功能,还有助于维持肠道稳态并增强免疫耐受[67]。此外在菌群组成方面,多糖可刺激益生菌增殖,同时抑制有害菌生长,从而调节肠道菌群并促进更平衡的菌群结构[68]。研究发现,黄芪多糖能提高酒精性肝损伤小鼠肠道中拟杆菌属的丰度,改善肠道菌群失调[69]。甘草多糖可上调乳杆菌科、疣微菌科和双歧杆菌科、S24-7 菌、丹毒丝菌属的丰度,同时下调瘤胃球菌科、毛螺菌科、肠杆菌科和丹毒丝菌科、脱硫弧菌属的丰度[70]。黄精叶多糖可增加小鼠肠道中厚壁菌门的丰度,降低拟杆菌门的丰度;在属水平上,乳杆菌属丰度增加,而毛螺菌科和拟杆菌属丰度降低[71]。铁皮石斛多糖可降低衰老模型小鼠肠道中厚壁菌门/拟杆菌门 (F/B)的值,增加乳杆菌属的丰度[72]。葛根多糖可通过促进肠道有益菌增殖并抑制致病菌,有效缓解抗菌药 物相关性腹泻引起的结肠病变和肠道菌群失调[73]。芦笋多糖可影响结肠炎小鼠肠道 SCFA 水平,增加丙氨酸、异戊酸及 SCFA 总含量[74]。地黄多糖在肠道微生物作用下可发酵生成 SCFA,提高肠道中乙酸、丙酸和丁酸水平,对小鼠结肠炎产生有益作用[75]。此外,黄芪多糖能增加 SCFA 含量,进而调节肠道菌群[76]。竹茹多糖通过上调拟杆菌门和普雷沃氏菌属Prevotella 丰度,下调梭菌属和嗜胆菌属丰度来促进SCFA 生成,对调节肠道菌群平衡具有生物活性作用[77]。猴头菇多糖可增加 SCFA 产生菌的丰度,使体内 SCFA 水平恢复正常,从而减轻环磷酰胺诱导的小鼠免疫抑制[78]。岩藻多糖可提高拟杆菌属、嗜黏蛋白阿克曼菌、布劳特氏菌属 Blautia 和普雷沃氏菌属的比例,改善小鼠代谢综合征和肠道营养不良[79-81]。因此,天然多糖能优化肠道有益菌群的组成和比例,促进健康菌群生长并降低致病菌丰度,从而使宿主维持健康的微生态平衡系统(图 4)。
3.2 对肠道屏障功能的增强作用
肠道作为动物体内与外界环境接触面积最大的器官,不仅是消化吸收的重要场所,更是抵御外源性病原体和毒素的防御屏障[82]。研究表明,多糖可通过调控紧密连接蛋白 (tight junction,TJ)表达及空间重组来增强肠道屏障的机械强度。TJ 蛋白的动态平衡是维持肠道选择性通透性的结构基础,其功能受肌球蛋白轻链激酶、蛋白激酶 C 和丝裂原活化 蛋 白 激 酶 ( mitogen-activated protein kinase ,MAPK)等信号通路调控[83-84]。卵叶车前子、薏苡仁和螺旋藻的多糖可提高人结直肠腺癌 Caco-2 细胞跨上皮电阻,降低荧光标记葡聚糖的细胞旁转运,同时上调紧密连接蛋白-1 (claudin-1)、claudin-3 和 ZO-1 等的表达[85-87]。鸡血藤多糖可提升环磷酰胺诱导的免疫抑制鸡空肠黏膜中ZO-1和claudin-1 的基因表达,从而改善肠道屏障功能[88]。多糖对TJ 蛋白的调控作用可通过血清标志物体现:黄芪多糖与木糖联用能降低肉鸡血浆中二胺氧化酶和 D-乳酸水平,同时上调空肠 claudin-1、claudin-3 和闭锁蛋白的基因表达,改善生长性能[89]。多糖还能通过抑制氧化应激保护肠上皮细胞免受活性氧介导的损伤。研究发现红藻多糖可降低 2,4,6-三硝基苯磺酸诱导大鼠模型结肠组织中的丙二醛含量,抑制诱导型一氧化氮合酶和过氧亚硝酸盐的过度产生,从而缓解肠道屏障损伤[90]。燕麦 β-葡聚糖可增强SOD、GSH-Px 和谷胱甘肽还原酶的活性,降低脂多糖诱导肠炎模型大鼠脾脏中的氧化应激标志物水平,其作用机制可能与其分子清除外来氢自由基的能力相关[91]。在虾类、肉鸡和断奶仔猪血清中,多糖通过提升 SOD、GSH-Px 和过氧化氢酶活性,有效恢复氧化-抗氧化系统失衡并维持肠道稳态[92-94]。这些发现表明,多糖可通过酶促与非酶促抗氧化系统的协同调控抵抗活性氧对肠道屏障的损伤。此外黄芪多糖与西洋参多糖联用抑制脂多糖处理断奶仔猪肠道中 TLR4/髓样分化因子 88(molecule myeloid differentiation factor 88,MyD88)/NF-κB 信号通路的异常激活,降低血清 IL-1β 和 TNF-α 水平,从而保护肠上皮屏障完整性[95]。酸枣仁多糖通过下调 TLR4/NF-κB 信号,降低脓毒症模型小鼠肠道中IL-6、IL-1β 和 TNF-α 表达,逆转盲肠结扎穿刺诱导的肠道屏障功能障碍[96]。值得注意的是,多糖的抗炎作用不仅限于抑制促炎因子,还能通过诱导抗炎因子 IL-10 的分泌实现免疫调控。阿拉伯半乳聚糖可抑制 Caco-2 细胞中 NF-κB 活性,刺激 IL-10 产生,从而降低远端结肠通透性并维持屏障完整性[97]。复合纤维能增加 IL-10 敲除小鼠肠黏膜中调节性 T细胞的分化,减少 CD4+ T 细胞浸润,抑制 TNF-α/TNF 受体介导的 TJ 蛋白通透性升高,最终缓解慢性结肠炎[98]。综上,多糖通过抗氧化、抗炎、调控TJ 蛋白及促进 SCFA 产生等多重途径协同维护肠道功能稳定性(图 4)。
SOD-超氧化物歧化酶;GSH-Px-谷胱甘肽过氧化物酶。
SOD-superoxide dismutase; GSH-Px-glutathione peroxidase.
图 4 多糖通过调节肠道菌群及屏障功能改善肠道健康的作用机制
Fig. 4 Mechanism by which polysaccharides improve intestinal health through modulation of gut microbiota and barrier function
4 天然多糖通过肠-脑轴调控抑郁症的多维机制
4.1 肠道菌群结构变化与稳态调节
天然多糖作为重要的益生元,能够有效调节肠道菌群的结构紊乱,重建肠道微生态平衡,是其通过 MGBA 干预抑郁症的关键起始环节。黄秋葵多糖通过降低拟杆菌门与放线菌门的相对丰度,同时提高厚壁菌门和乳杆菌属的比例,从而纠正慢性不可预见温和应激(chronic unpredictable mild stress,CUMS)小鼠的菌群失调[26,99]。杜仲多糖则表现为增加乳杆菌科的丰度,同时抑制变形菌门、Clostridia和Prevotellaceae 等与炎症或代谢紊乱相关的类群,通过重塑菌群结构来发挥抗抑郁效应[100-101]。肉苁蓉多糖能够增加拟杆菌门、Parabacteroides 和布劳特氏菌属的丰度,这些变化有助于调节免疫平衡和提高 SCFA 水平[25,102-103]。此外,银杏多糖被证实能有效增强肠道乳杆菌属的丰度[104],芍药多糖[27]、五味子多糖[105]及延胡索多糖[106]也均被报道可通过调节失衡的肠道菌群结构来发挥抗抑郁作用。这些研究共同表明,天然多糖能够通过靶向性地调节特定菌门 (厚壁菌门、拟杆菌门、变形菌门)、纲、科 (乳杆菌科)和属 (乳杆菌属、Russellella、Eubacterium)等的丰度,有效逆转抑郁症相关的菌群生态失调。
4.2 代谢物与表观遗传调控
4.2.1 色氨酸代谢的调控 色氨酸作为人体必需 氨基酸,是 5-HT 合成的唯一前体,在抑郁症发病机制中具有关键作用[107]。色氨酸主要通过 3 条代谢通路进行代谢:经肠道吸收后,约 95%进入犬尿氨酸代谢通路,剩余少量在色氨酸羟化酶催化下生成 5-HT,最终经单胺氧化酶代谢为 5-羟吲哚乙酸[108-109]。研究表明急性色氨酸耗竭会降低 5-HT 合成并诱发抑郁症状,而犬尿氨酸水平升高则通过激活免疫与炎症反应加剧神经损伤[107,110]。多糖可通过调控关键酶活性来调节色氨酸代谢通路,促进 5-HT 合成并抑制神经毒性代谢物 3-羟基犬尿氨酸的产生[111]。研究发现,肉苁蓉总多糖能通过调控肠道菌群互作抑制犬尿氨酸代谢通路,调节 HPA 轴与下丘脑-垂体-性腺轴功能,同时增强海马区 5-HT 与 BDNF 的表达,从而改善抑郁样行为及神经内分泌紊乱[25]。
4.2.2 SCFA 的表观遗传调控机制
SCFA 是由 1~6 个碳原子组成的饱和脂肪酸,由肠道菌群通过分解植物多糖产生。作为组蛋白去乙酰化酶(histone deacetylase,HDAC)抑制剂,SCFA 通过抑制 HDAC活性改变染色质构象。其中丁酸盐是最强的天然HDAC 抑制剂,可特异性抑制 HDAC2/3 活性,诱导组蛋白 H3 和 H4 的超乙酰化状态,从而激活BDNF 和胶质细胞源性神经营养因子等神经保护基因的转录。在抑郁症病理机制中,SCFA 通过以下途径发挥保护作用:(1)调控神经免疫微环境,SCFA通过抑制 NF-κB 信号通路减少 IL-6 和 TNF-α 释放,同时促进抗炎因子 IL-10 和转化生长因子-β 表达,从而缓解海马区小胶质细胞的过度激活[112]。(2)维持血脑屏障完整性,SCFA 通过上调 ZO-1 和闭锁蛋白表达降低肠道通透性,阻断脂多糖等促炎成分进入 CNS[113]。(3)调节神经递质系统,SCFA 通过激活肠嗜铬细胞促进 5-HT 前体色氨酸合成,同时抑制吲哚胺 2,3-双加氧酶活性并减少犬尿氨酸通路激活,从而提高脑内 5-HT 和多巴胺水平[114]。临床研究证实,抑郁症患者粪便中 SCFA 浓度降低,且与汉密尔顿抑郁量表评分呈负相关[115]。值得注意的是,不同 SCFA 作用存在差异。丁酸盐对表观遗传调控作用最为显著,而丙酸和乙酸则更多通过代谢通路间接发挥作用。此外,SCFA 的神经保护效应依赖于肠道菌群多样性[116]。Xiong 等[117]发现逍遥散多糖可增加产丁酸盐菌多样性,从而使肠道丁酸盐含量增加,改善 CUMS 诱导的抑郁样行为。Yan等[26]发现黄秋葵多糖恢复 CUMS 小鼠丁酸、乙酸、丙酸等 SCFA 浓度。这些发现为基于 SCFA 的抗抑郁策略提供了理论依据,提示恢复 SCFA 稳态可能成为未来抑郁症治疗的重要方向。
4.3 炎症免疫与神经可塑性调控
4.3.1 TLR4/NF-κB 通路与神经炎症
神经炎症是指 CNS 实质中神经元、小胶质细胞和星形胶质细胞对病原性刺激产生的级联炎症反应[118]。抗原刺激或神经损伤可诱导损伤相关分子模式的产生,激活神经胶质细胞并破坏血脑屏障完整性。这种失调会促进外周免疫细胞浸润和促炎因子风暴,通过自我强化的炎症循环加剧神经损伤[119-120]。NF-κB 通路是免疫功能、炎症反应、应激应答和细胞存活的关键调控枢纽。TLR4 通过 MyD88 募集炎症细胞,触发 NF-κB、TNF-α 和 IL-1β 等促炎介质释放。研究表明,应激可升高海马区 TLR4 和 NF-κB 表达,而TLR4 基因敲除能缓解这些应激效应[121]。临床研究发现,经历躯体或社会应激的抑郁症患者存在 NF-κB 通路激活现象。CUMS 啮齿类动物实验证实 NF-κB 信号通路会促进抑郁样行为并抑制神经干细胞增殖[122]。黄芪多糖可通过调节肠-脑轴并抑制脂多糖诱导的 MAPK/NF-κB 通路来减轻神经炎症。降低p-c-Jun 氨基末端激酶(c-Jun N-terminal kinase,JNK )、 p- 细胞外调节蛋白激酶 ( extracellular regulated protein kinase,ERK)和 p-p65 磷酸化水平,同时减少 IL-1β 和 TNF-α 表达[123]。五味子多糖可上调小胶质细胞低密度脂蛋白受体相关蛋白 1 表达,抑制 NF-κB 核转位,降低 TNF-α、IL-6 和 IL-1β释放,同时增强 M2 型标志物 IL-10 和精氨酸酶 1 表达[124]。灵芝多糖通过抑制 NOD 样受体热蛋白结构域 3 ( NOD like receptor family pyrin domain containing 3,NLRP3)炎症小体活化,并阻断 NF-κB 信号通路,从而降低半胱氨酸天冬氨酸蛋白酶-1、IL-1β 和 IL-18 表达[125]。石菖蒲酸性杂多糖可抑制小鼠小胶质 BV2 细胞中 TLR4 介导的 MyD88/NF-κB 和磷脂酰肌醇 3 激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶 B(protein kinase B,Akt)通路,减少脂多糖诱导的 TNF-α、IL-6、诱导型一氧化氮合酶和环氧合酶-2 释放,同时阻止活性氧过度产生和线粒体损伤[126]。杜仲多糖抑制小胶质细胞介导的 TLR4/ NF-κB/MAPK 信号通路激活和脂多糖释放,并调控神经发生模式,从而发挥抗抑郁作用[100-101]。这些研究结果表明,TLR4/NF-κB 通路是神经炎症的关键枢纽,而结构多样的天然多糖为抑郁症治疗提供了多靶点干预策略。
4.3.2 MAPK/PI3K/Akt
信号通路对神经可塑性的调控作用 天然多糖通过调节肠道菌群及其代谢产物,可间接激活 CNS 的 MAPK/PI3K/Akt 信号轴,进而调控神经可塑性。在抑郁症中,多种分子改变共同作用于 Akt 和 MAPK 信号通路。Akt 通过 MAPK和哺乳动物雷帕霉素靶蛋白网络关键调控葡萄糖代谢、细胞凋亡、增殖及迁移等细胞过程[127]。抑郁症的特征性神经功能障碍表现为神经可塑性受损, Akt 已成为精神疾病的关键调控因子,其功能缺陷与抑郁行为密切相关[128-129]。该激酶还能整合多巴胺和 5-HT 神经传递,参与重性抑郁障碍的发病机制[130-131]。MAPK 级联反应将细胞外刺激转化为多样化应答,通过核转位机制调控应激反应、炎症及细胞存活,同时影响突触可塑性和高级认知功能[132-133]。研究表明 MAPK 参与抑郁症的发病机制和治疗响应[134]。该通路通过 ERK 磷酸化 Ets 样蛋白-1 和环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)等转录因子,实现环境因素信号向基因组应答的传递。人类研究与动物模型均显示,抑郁症相关脑区存在 ERK 通路下调现象,而抗抑郁药则通过 ERK 活性正常化发挥治疗作用[134]。在抑郁症发病过程中,作为 PI3K 下游效应分子,Akt 通过磷酸化糖原合酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)抑制异常微管相关蛋白 tau(microtubule-associated protein tau,tau)磷酸化,维持突触完整性并促进树突棘形成;其功能异常导致海马 BDNF 表达降低及突触可塑性受损。研究发现枸杞多糖通过激活胰岛素受体底物 1/PI3K/Akt 信号通路,抑制 GSK-3β 活性,降低 tau 蛋白磷酸化水平,上调突触相关蛋白表达以增强神经可塑性[135]。黄秋葵多糖通过激活 PI3K/Akt 通路,改善 tau 蛋白病理并恢复突触功能[136]。五味子多糖则通过降低p38/ERK/JNK 磷酸化水平修复海马神经元形态[137]。
4.4 神经-内分泌与递质系统重塑
4.4.1 HPA 轴调控 HPA
轴作为神经内分泌系统调节应激反应的核心环节,其过度激活是抑郁症发病的关键机制。在长期应激状态下,CRH 和 ACTH的负反馈调节失效,导致皮质酮持续升高[138],进而引发 HPA 轴功能紊乱,这一过程可造成海马神经元损伤,从而诱发或加重抑郁。因此,通过降低皮质酮、CRH 和 ACTH 水平、恢复 HPA 轴负反馈机制,成为抗抑郁治疗的重要策略。研究发现黄精多糖可抑制脂多糖和 CUMS 模型中的皮质酮水平[139];枸杞多糖通过下调 NMDA 受体 2B 亚型和钙/钙调素依赖性蛋白激酶 II(calcium-calmodulin (CaM)-dependent protein kinase II,CaMKII)蛋白表达、降低血清皮质酮,增强 HPA 轴负反馈,改善创伤后应激障碍大鼠的抑郁行为[140];百合多糖与黄芪多糖联用可减轻海马 CA1 区神经细胞病理损伤,降低皮质酮和 ACTH 浓度,且复合效果优于单一成分[141];铁皮石斛多糖则有效降低抑郁模型小鼠血清中 CRH、ACTH 和皮质酮水平,逆转 HPA 轴功能异常[142]。这些结果表明,多糖类物质可通过抑制 HPA 轴过度活化、促进负反馈调节,从而发挥抗抑郁作用。
4.4.2 BDNF/酪氨酸激酶受体 B(tyrosine kinase receptor B,TrkB)/CREB 通路BDNF 在 CNS 内广泛表达,通过与其特异性受体 TrkB 结合,进而磷酸化 Akt 并激活转录因子 CREB,从而发挥神经保护作用[143]。通过突触前和突触后 TrkB 受体的激活,BDNF 调控神经元存活与突触可塑性[144]。根据抑郁症的神经营养假说,慢性应激会降低海马区BDNF 表达,该现象与抑郁行为相关。BDNF-TrkB复合体通过 N-甲基-D-天冬氨酸受体(N-methyl-D aspartic acid receptor,NMDAR)/CaMKII 通路诱导突触重塑,磷酸化 TrkB 能增强 NMDAR 功能以促进谷氨酸能传递,同时防止兴奋性毒性[145-146]。五味子多糖可调节 TrkB 受体磷酸化增强 BDNF 表达与CREB 磷酸化,抑制海马神经元凋亡并恢复 5-HT 系统功能[147]。紫菜多糖通过激活海马区 BDNF/ TrkB/ERK/CREB 通路上调 BDNF 表达并促进TrkB、ERK 和 CREB 磷酸化[148]。该级联反应可减少神经元凋亡,同时刺激神经发生和树突棘密度增加,拮抗慢性应激诱导的抑郁行为。何首乌多糖能将小胶质细胞极化表型从脂多糖诱导的 M1 型转为M2 型,并通过激活 BDNF/TrkB/CREB 通路支持神经元存活与突触可塑性[149]。藤椒多糖可通过激活CREB/BDNF 信号通路增强突触功能,最终表现出抗抑郁效应[150]。天然多糖通过 MGBA 改善抑郁症作用机制见图 5。
图 5 天然多糖通过 MGBA 改善抑郁症的作用机制
Fig. 5 Mechanism of natural polysaccharides improving depression through MGB axis
5 临床研究现状
近期临床前研究表明,多糖类化合物可通过调节肠道菌群组成、增强肠道屏障完整性及调控脑内神经递质平衡等途径缓解抑郁样行为。然而,此类研究目前仍局限于模型动物及体外机制探索,多糖作为抗抑郁药物的临床转化尚处于早期阶段。一项为期 6 周的随机双盲安慰剂对照试验显示,枸杞多糖 300 mg/d 对青少年亚阈值抑郁症具有显著疗效。干预组汉密尔顿抑郁量表 24 项版评分降低幅度显著高于对照组,尤其在认知功能障碍、精神运动迟滞和绝望症状方面改善明显,其缓解率达 33.3%,而对照组仅为 7.14%[151]。机制研究显示枸杞多糖可能通过抗炎途径发挥作用,表现为选择性降低 IL-17A 水平及调节细胞因子网络连接性[152]。然而在合并抑郁症的冠心病患者中,仅菊粉-益生菌的联合治疗能降低贝克抑郁量表评分和 TNF-α 水平,同时提升菌群多样性和 IL-10 水平[153]。尽管这些结果具有积极意义,仍需开展多中心大样本试验以确定最佳给药方案、长期疗效及精确作用机制。
6 结语与展望
天然多糖通过协同调节肠道菌群、代谢通路及神经保护机制,为抑郁症治疗提供了多靶点干预新策略。其在增强肠道屏障、抑制 TLR4/NF-κB 神经炎症及激活 BDNF/TrkB/CREB 通路等方面展现出明确潜力,并借助 SCFA 介导的表观遗传调控机制,将微生物代谢与神经可塑性紧密相连。然而,该领域研究仍存在重要局限:当前证据多停留于相关性层面(行为改善与 16S 测序菌群变化的关联),或提供潜在机制线索 (关键信号分子表达变化),但能够明确因果关系的实验验证仍显不足,尤其是采用无菌动物、粪菌移植或特定代谢物回补等策略以实证菌群及其代谢产物在多糖抗抑郁效应中的必要性研究相对匮乏。此外,多糖的构效关系仍有待系统阐释,包括相对分子质量、糖苷键类型及分支结构对其益生元效应及神经调控功能的影响。尽管CUMS 及脂多糖诱导的动物模型已显示积极疗效,但物种间菌群组成及血脑屏障差异仍阻碍临床转化。现有临床研究亦受限于样本规模和多糖制剂标准化不足,还需推动大规模 III 期试验并结合微生物组分析以识别应答人群、优化给药策略。未来应着力强化因果层次的研究设计,并整合空间转录组、体内实时传感及人工智能等多学科技术,深入解析 “多糖-菌群-脑”互作网络,最终推动抑郁症治疗向个性化、微生态靶向干预模式迈进。
利益冲突:所有作者均声明不存在利益冲突
参考文献
[1] 陈伟康, 令狐婷, 任燕. 中药治疗抑郁症作用机制研究进展 [J]. 中草药, 2025, 56(11): 4090-4102.
[2] Thapar A, Eyre O, Patel V, et al. Depression in youngpeople [J].Lancet,2022, 400(10352): 617-631.
[3] Myles P S, Kulkarni J, Nagele P.Treatments for majordepression [J]. Lancet, 2023, 401(10394): 2111.
[4] Marx W, Penninx B W J H, Solmi M, et al. Major
depressive disorder [J]. Nat Rev Dis Primers, 2023, 9(1): 44.
[5] Marwaha S, Palmer E, Suppes T, et al. Novel and emerging
treatments for major depression [J]. Lancet, 2023, 401(10371): 141-153.
[6] 高菲, 甄莉炜, 卫梦甜, 等. 基于生物信息学分析重度抑郁症的氧化应激相关基因及靶向防治中药筛选 [J].药物评价研究, 2024, 47(12): 2899-2908.
[7] Tartt A N, Mariani M B, Hen R E, et al. Dysregulation of adult hippocampal neuroplasticity in major depression:Pathogenesis and therapeutic implications [J]. Mol Psychiatry, 2022, 27(6): 2689-2699.
[8] Song Y, Cao H, Zuo C C, et al. Mitochondrial dysfunction: A fatal blow in depression [J]. Biomed Pharmacother,2023, 167: 115652.
[9] Troubat R, Barone P, Leman S, et al. Neuroinflammation
and depression: A review [J]. Eur J Neurosci, 2021, 53(1):151-171.
[10] Jiang L H, Liang Q Y, Shi Y. Pure docosahexaenoic acid
can improve depression behaviors and affect HPA axis in
mice [J]. Eur Rev Med Pharmacol Sci, 2012, 16(13): 1765-1773.
[11] 王慧敏, 秦雪梅, 刘晓节. 脑-肠交互视域下抑郁症与胃肠疾病共病的中西药调节及其机制研究进展 [J]. 中草药, 2024, 55(1): 332-343.
[12] McCallum G, Tropini C. The gut microbiota and its
biogeography [J]. Nat Rev Microbiol, 2024, 22(2): 105-118.
[13] Hou K J, Wu Z X, Chen X Y, et al. Microbiota in health
and diseases [J]. Signal Transduct Target Ther, 2022, 7(1):135.
[14] 刘致远, 邹蔓姝, 韩远山, 等. 肠道菌群-P2X7R/NLRP3 信号通路互作: 揭示抑郁症中的神经炎症与代谢调控机制及中药干预研究 [J]. 中草药, 2025, 56(12):
4436-4452.
[15] Gao M X, Wang J Z, Liu P H, et al. Gut microbiota
composition in depressive disorder: A systematic review,
Meta-analysis, and Meta-regression [J]. Transl Psychiatry, 2023, 13(1): 379.
[16] Arbabi F, Shapoury R, Haghi F, et al. Investigating the bacterial profiles of Lactobacillus, Bifidobacterium,
Actinobacteria, Fusobacterium, Firmicutes, and Bacteroides in stool samples from patients with severe depression and healthy individuals [J]. Psychoneuroendocrinology, 2024, 170: 107090.
[17] Reyes-Martínez S, Segura-Real L, Gómez-García A P, et al. Neuroinflammation, microbiota-gut-brain axis, and
depression: The vicious circle [J]. J Integr Neurosci,2023, 22(3): 65.
[18] Liaqat H, Parveen A, Kim S Y. Antidepressive effect of natural products and their derivatives targeting BDNF
TrkB in gut-brain axis [J]. Int J Mol Sci, 2022, 23(23):
14968.
[19] Rajanala K, Kumar N, Chamallamudi M R. Modulation of
gut-brain axis by probiotics: A promising anti-depressantapproach [J]. Curr Neuropharmacol, 2021, 19(7): 990- 1006.
[20] Yu Y, Shen M Y, Song Q Q, et al. Biological activities and pharmaceutical applications of polysaccharide from
natural resources: A review [J]. Carbohydr Polym, 2018,
183: 91-101.
[21] 路帅帅, 杨奥淇, 徐硕, 等. 植物多糖生物活性及其应
用研究进展 [J]. 畜牧与饲料科学, 2025, 46(2): 86-94.
[22] Song Q Q, Wang Y K, Huang L X, et al. Review of the
relationships among polysaccharides, gut microbiota, and
human health [J]. Food Res Int, 2021, 140: 109858.
[23] Dupraz L, Magniez A, Rolhion N, et al. Gut microbiota
derived short-chain fatty acids regulate IL-17 production
by mouse and human intestinal γδ T cells [J]. Cell Rep,
2021, 36(1): 109332.
[24] Zhang S Q, Tian D, Hu C Y, et al. Chlorogenic acid
ameliorates high-fat and high-fructose diet-induced
cognitive impairment via mediating the microbiota-gut
brain axis [J]. J Agric Food Chem, 2022, 70(8): 2600-
2615.
[25] Fan L, Peng Y, Wang J W, et al. Total glycosides from
stems of Cistanche tubulosa alleviate depression-like
behaviors: Bidirectional interaction of the
phytochemicals and gut microbiota [J]. Phytomedicine, 2021, 83: 153471.
[26] Yan T X, Nian T T, Liao Z Z, et al. Antidepressant effects of a polysaccharide from okra (Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota [J]. Int J Biol Macromol, 2020, 144: 427-440.
[27] Zhou Z J, Wang Y L, Sun S Q, et al. Paeonia lactiflora
Pall. Polysaccharide alleviates depression in CUMS mice
by inhibiting the NLRP3/ASC/Caspase-1 signaling
pathway and affecting the composition of their intestinal
flora [J]. J Ethnopharmacol, 2023, 316: 116716.
[28] Dixit K, Chaudhari D, Dhotre D, et al. Restoration of
dysbiotic human gut microbiome for homeostasis [J]. Life
Sci, 2021, 278: 119622.
[29] Giovannini M G, Lana D, Traini C, et al. The microbiotagut-brain axis and Alzheimer disease. from dysbiosis to neurodegeneration: Focus on the central nervous system glial cells [J]. J Clin Med, 2021, 10(11): 2358.
[30] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora [J]. Science, 2005,
308(5728): 1635-1638.
[31] Suganya K, Koo B S. Gut-brain axis: Role of gut
microbiota on neurological disorders and how probiotics/
prebiotics beneficially modulate microbial and immune
pathways to improve brain functions [J]. Int J Mol Sci,
2020, 21(20): 7551.
[32] Jandhyala S M, Talukdar R, Subramanyam C, et al. Role
of the normal gut microbiota [J]. World J Gastroenterol,
2015, 21(29): 8787-8803.
[33] Procházková N, Falony G, Dragsted L O, et al. Advancing human gut microbiota research by considering gut transit time [J]. Gut, 2023, 72(1): 180-191.
[34] Barandouzi Z A, Starkweather A R, Henderson W A, et al. Altered composition of gut microbiota in depression: A systematic review [J]. Front Psychiatry, 2020, 11: 541.
[35] Aizawa E, Tsuji H, Asahara T, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder [J]. J Affect Disord, 2016, 202: 254-257.
[36] Chin Fatt C R, Asbury S, Jha M K, et al. Leveraging the microbiome to understand clinical heterogeneity in
depression: Findings from the T-RAD study [J]. Transl
Psychiatry, 2023, 13(1): 139.
[37] Liu L X, Wang H Y, Chen X Y, et al. Gut microbiota and
its metabolites in depression: From pathogenesis to
treatment [J]. EBioMedicine, 2023, 90: 104527.
[38] Yao H, Zhang D L, Yu H, et al. Gut microbiota regulates
chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation [J]. Mol Psychiatry, 2023, 28(2): 919-930.
[39] Chen L M, Bao C H, Wu Y, et al. Tryptophan-kynurenine
metabolism: A link between the gut and brain for depression in inflammatory bowel disease [J]. J Neuroinflammation, 2021, 18(1): 135.
[40] Kearns R. Gut-brain axis and neuroinflammation: The role of gut permeability and the kynurenine pathway in
neurological disorders [J]. Cell Mol Neurobiol, 2024,
44(1): 64.
[41] Sharma V, Sharma P, Singh T G. Mechanistic insights on TLR-4 mediated inflammatory pathway in neurodegenerative diseases [J]. Pharmacol Rep, 2024, 76(4): 679-692.
[42] Staller K, Abber S R, Burton Murray H. The intersection
between eating disorders and gastrointestinal disorders: A narrative review and practical guide [J]. Lancet Gastroenterol Hepatol, 2023, 8(6): 565-578.
[43] Wang W, Zhai T, Luo P, et al. Beneficial effects of silibinin on serum lipids, bile acids, and gut microbiota in methionine-choline-deficient diet-induced mice [J]. Front Nutr, 2023, 10: 1257158.
[44] Dinan T G, Cryan J F. The microbiome-gut-brain axis in health and disease [J]. Gastroenterol Clin North Am, 2017, 46(1): 77-89
[45] Aburto M R, Cryan J F. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiotagut-brain axis [J]. Nat Rev Gastroenterol Hepatol, 2024, 21(4): 222-247.
[46] Rutsch A, Kantsjö J B, Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain
physiology and pathology [J]. Front Immunol, 2020, 11:
604179.
[47] Wilhelmsen I. Brain-gut axis as an example of the bio
psycho-social model [J]. Gut, 2000, 47(Suppl 4): iv5-7.
[48] Breit S, Kupferberg A, Rogler G, et al. Vagus nerve as modulator of the brain-gut axis in psychiatric and
inflammatory disorders [J]. Front Psychiatry, 2018, 9: 44.
[49] Osadchiy V, Martin C R, Mayer E A. The gut-brain axis
and the microbiome: Mechanisms and clinical implications [J]. Clin Gastroenterol Hepatol, 2019, 17(2): 322-332.
[50] Du Y, Gao X R, Peng L, et al. Crosstalk between the
microbiota-gut-brain axis and depression [J]. Heliyon,
2020, 6(6): e04097.
[51] Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K.
Communication of gut microbiota and brain via immune
and neuroendocrine signaling [J]. Front Microbiol, 2023,
14: 1118529.
[52] Makris A P, Karianaki M, Tsamis K I, et al. Correction to: The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways [J]. Hormones, 2021, 20(1):
223-224.
[53] Gershon M D, Margolis K G. The gut, its microbiome, and the brain: Connections and communications [J]. J Clin
Invest, 2021, 131(18): e143768.
[54] Caspani G, Kennedy S, Foster J A, et al. Gut microbial
metabolites in depression: Understanding the biochemical
mechanisms [J]. Microb Cell, 2019, 6(10): 454-481.
[55] Cheng J, Hu H, Ju Y, et al. Gut microbiota-derived short chain fatty acids and depression: Deep insight into
biological mechanisms and potential applications [J]. Gen
Psychiatr, 2024, 37(1): e101374.
[56] Rauf A, Khalil A A, Rahman U U, et al. Recent advances
in the therapeutic application of short-chain fatty acids
(SCFAs): An updated review [J]. Crit Rev Food Sci Nutr,
2022, 62(22): 6034-6054.
[57] den Besten G, van Eunen K, Groen A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism [J]. J Lipid Res, 2013, 54(9): 2325-2340.
[58] Kumar V, Kundu S, Singh A, et al. Understanding the role of histone deacetylase and their inhibitors in
neurodegenerative disorders: Current targets and future
perspective [J]. Curr Neuropharmacol, 2022, 20(1): 158-
178.
[59] Mei C H, Li W X, Zhao B C, et al. Short-chain fatty acids mediate gut microbiota-brain communication and protect the blood-brain barrier integrity [J]. Ann N Y Acad Sci, 2025, 1545(1): 116-131.
[60] Li C Y, Yao J T, Yang C, et al. Gut microbiota-derived short chain fatty acids act as mediators of the gut-liver-brain axis [J]. Metab Brain Dis, 2025, 40(2): 122.
[61] Pellegrini C, Antonioli L, Calderone V, et al. Microbiotagut-brain axis in health and disease: Is NLRP3
inflammasome at the crossroads of microbiota-gut-brain
communications? [J]. Prog Neurobiol, 2020, 191: 101806.
[62] Dinan T G, Cryan J F. Microbes, immunity, and behavior:
Psychoneuroimmunology meets the microbiome [J]. Neuropsychopharmacology, 2017, 42(1): 178-192.
[63] Kelly J R, Kennedy P J, Cryan J F, et al. Breaking down
the barriers: The gut microbiome, intestinal permeability
and stress-related psychiatric disorders [J]. Front Cell
Neurosci, 2015, 9: 392.
[64] Alexandrov P N, Hill J M, Zhao Y, et al. Aluminum
induced generation of lipopolysaccharide (LPS) from the
human gastrointestinal (GI)-tract microbiome-resident
Bacteroides fragilis [J]. J Inorg Biochem, 2020, 203:
110886.
[65] Simpson D S A, Oliver P L. ROS generation in microglia:
Understanding oxidative stress and inflammation in
neurodegenerative disease [J]. Antioxidants, 2020, 9(8):
743.
[66] Rothhammer V, Borucki D M, Tjon E C, et al. Microglial
control of astrocytes in response to microbial metabolites
[J]. Nature, 2018, 557(7707): 724-728.
[67] Xu J, Chen H B, Li S L. Understanding the molecular
mechanisms of the interplay between herbal medicines and
gut microbiota [J]. Med Res Rev, 2017, 37(5): 1140-1185.
[68] Xue H K, Tang Y Q, Zha M, et al. The structure-function
relationships and interaction between polysaccharides and
intestinal microbiota: A review [J]. Int J Biol Macromol,
2025, 291: 139063.
[69] Zhou J X, Zhang N H, Zhao L, et al. Astragalus
polysaccharides and saponins alleviate liver injury and
regulate gut microbiota in alcohol liver disease mice [J].
Foods, 2021, 10(11): 2688.
[70] Wei X X, Li N, Wu X Y, et al. The preventive effect of Glycyrrhiza polysaccharide on lipopolysaccharide
induced acute colitis in mice by modulating gut microbial
communities [J]. Int J Biol Macromol, 2023, 239:124199.
[71] Luo Y, Fang Q, Lai Y, et al. Polysaccharides from the
leaves of Polygonatum sibiricum Red. regulate the gut
microbiota and affect the production of short-chain fatty
acids in mice [J]. AMB Express, 2022, 12(1): 35.
[72] Xu L, Zeng X X, Liu Y N, et al. Inhibitory effect of
Dendrobium officinale polysaccharide on oxidative
damage of glial cells in aging mice by regulating gut
microbiota [J]. Int J Biol Macromol, 2023, 247: 125787.
[73] Chen R, Liu B, Wang X Y, et al. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice [J]. Int J Biol Macromol, 2020:S0141-8130(20)33067-1.
[74] Lu S Y, Liu Y, Tang S J, et al. Gracilaria lemaneiformis
polysaccharides alleviate colitis by modulating the gut
microbiota and intestinal barrier in mice [J]. Food Chem
X, 2021, 13: 100197.
[75] Lv H, Jia H P, Cai W J, et al. Rehmannia glutinosa
polysaccharides attenuates colitis via reshaping gut
microbiota and short-chain fatty acid production [J]. J Sci
Food Agric, 2023, 103(8): 3926-3938.
[76] Zhang Y, Ji W T, Qin H L, et al. Astragalus
polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/
Treg cell homeostasis in a microbiota-dependent manner
[J]. Carbohydr Polym, 2025, 349(Pt A): 122829.
[77] Xue H K, Liang B M, Wang Y, et al. The regulatory effect
of polysaccharides on the gut microbiota and their effect
on human health: A review [J]. Int J Biol Macromol, 2024,
270: 132170.
[78] Tian B M, Wang P Y, Xu T R, et al. Ameliorating effects
of Hericium erinaceus polysaccharides on intestinal
barrier injury in immunocompromised mice induced by
cyclophosphamide [J]. Food Funct, 2023, 14(6): 2921-
2932.
[79] Shang Q S, Shan X D, Cai C, et al. Dietary fucoidan
modulates the gut microbiota in mice by increasing the
abundance of Lactobacillus and Ruminococcaceae [J].
Food Funct, 2016, 7(7): 3224-3232.
[80] Wu Q F, Wu S Y, Cheng Y, et al. Sargassum fusiforme
fucoidan modifies gut microbiota and intestinal
metabolites during alleviation of hyperglycemia in type 2
diabetic mice [J]. Food Funct, 2021, 12(8): 3572-3585.
[81] Sun T, Xue M L, Yang J, et al. Metabolic regulation
mechanism of fucoidan via intestinal microecology in
diseases [J]. J Sci Food Agric, 2021, 101(11): 4456-4463.
[82] Ramanan D, Cadwell K. Intrinsic defense mechanisms of
the intestinal epithelium [J]. Cell Host Microbe, 2016,
19(4): 434-441.
[83] Sultana R, McBain A J, O’Neill C A. Strain-dependent
augmentation of tight-junction barrier function in human
primary epidermal keratinocytes by Lactobacillus and
Bifidobacterium lysates [J]. Appl Environ Microbiol, 2013,
79(16): 4887-4894.
[84] González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways [J].
Biochim Biophys Acta, 2008, 1778(3): 729-756.
[85] Li F F, Du P C, Yang W Y, et al. Polysaccharide from the seeds of Plantago asiatica L. alleviates nonylphenol
induced intestinal barrier injury by regulating tight
junctions in human Caco-2 cell line [J]. Int J Biol
Macromol, 2020, 164: 2134-2140.
[86] Wang Q, Liu F, Chen X X, et al. Effects of the
polysaccharide SPS-3-1 purified from Spirulina on barrier
integrity and proliferation of Caco-2 cells [J]. Int J Biol
Macromol, 2020, 163: 279-287.
[87] Li Y L, Tian X D, Li S C, et al. Total polysaccharides of adlay bran (Coix lachryma-jobi L.) improve TNF-α
induced epithelial barrier dysfunction in Caco-2 cells via
inhibition of the inflammatory response [J]. Food Funct,
2019, 10(5): 2906-2913.
[88] Cui Y, Sun W J, Li Q M, et al. Effects of Caulis Spatholobi polysaccharide on immunity, intestinal mucosal barrier function, and intestinal microbiota in cyclophosphamideinduced immunosuppressive chickens [J]. Front Vet Sci, 2022, 9: 833842.
[89] Wang Q, Wang X F, Xing T, et al. The combined impact of xylo-oligosaccharides and gamma-irradiated Astragalus
polysaccharides on growth performance and intestinal
mucosal barrier function of broilers [J]. Poult Sci, 2021,
100(3): 100909.
[90] V Brito T, Barros F C N, Silva R O, et al. Sulfated
polysaccharide from the marine algae Hypnea musciformis
inhibits TNBS-induced intestinal damage in rats [J].
Carbohydr Polym, 2016, 151: 957-964.
[91] Błaszczyk K, Wilczak J, Harasym J, et al. Impact of low and high molecular weight oat beta-glucan on oxidative
stress and antioxidant defense in spleen of rats with LPS
induced enteritis [J]. Food Hydrocoll, 2015, 51: 272-280.
[92] Liu W C, Zhou S H, Balasubramanian B, et al. Dietary
seaweed (Enteromorpha) polysaccharides improves growth performance involved in regulation of immune responses, intestinal morphology and microbial community in banana shrimp Fenneropenaeus merguiensis [J]. Fish Shellfish Immunol, 2020, 104: 202-212.
[93] Liu W C, Guo Y, Zhao Z H, et al. Algae-derived
polysaccharides promote growth performance byimproving antioxidant capacity and intestinal barrier
function in broiler chickens [J]. Front Vet Sci, 2020, 7:
601336.
[94] Zou T D, Yang J, Guo X B, et al. Dietary seaweed-derived
polysaccharides improve growth performance of weaned
pigs through maintaining intestinal barrier function and
modulating gut microbial populations [J]. J Anim Sci
Biotechnol, 2021, 12(1): 28.
[95] Wang K L, Zhang H R, Han Q J, et al. Effects of
Astragalus and ginseng polysaccharides on growth
performance, immune function and intestinal barrier in
weaned piglets challenged with lipopolysaccharide [J]. J
Anim Physiol Anim Nutr, 2020, 104(4): 1096-1105.
[96] Zhou H C, Guo C G, Yu W W, et al. Zizyphus jujuba cv.
Muzao polysaccharides enhance intestinal barrier function
and improve the survival of septic mice [J]. J Food
Biochem, 2021, 45(5): e13722.
[97] Daguet D, Pinheiro I, Verhelst A, et al. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the Simulator of the Human Intestinal Microbial Ecosystem [J]. J Funct Foods, 2016, 20: 369-379.
[98] Wang H G, Shi P L, Zuo L G, et al. Dietary non-digestible polysaccharides ameliorate intestinal epithelial barrier dysfunction in IL-10 knockout mice [J]. J Crohns Colitis, 2016, 10(9): 1076-1086.
[99] Li Y P, Wang X Y, Lv X Y, et al. Extractions and
rheological properties of polysaccharide from okra pulp
under mild conditions [J]. Int J Biol Macromol, 2020, 148:
510-517.
[100] Sun P H, Wang M L, Li Z N, et al. Eucommiae cortex
polysaccharides mitigate obesogenic diet-induced
cognitive and social dysfunction via modulation of gut
microbiota and tryptophan metabolism [J]. Theranostics,
2022, 12(8): 3637-3655.
[101] Wang M L, Sun P H, Li Z N, et al. Eucommiae cortex
polysaccharides attenuate gut microbiota dysbiosis and
neuroinflammation in mice exposed to chronic unpredictable mild stress: Beneficial in ameliorating depressive-like behaviors [J]. J Affect Disord, 2023, 334: 278-292.
[102] Feng S S, Yang X M, Weng X, et al. Aqueous extracts from cultivated Cistanche deserticola Y. C. Ma as
polysaccharide adjuvant promote immune responses via
facilitating dendritic cell activation [J]. J Ethnopharmacol, 2021, 277: 114256.
[103] Liu X J, Wu X L, Wang S Y, et al. Microbiome and
metabolome integrally reveal the anti-depression effects of Cistanche deserticola polysaccharides from the
perspective of gut homeostasis [J]. Int J Biol Macromol,
2023, 245: 125542.
[104] Chen P, Hei M F, Kong L L, et al. One water-soluble
polysaccharide from Ginkgo biloba leaves with antidepressant activities via modulation of the gut
microbiome [J]. Food Funct, 2019, 10(12): 8161-8171.
[105] Zhu S M, Luo F Y, Peng J, et al. The physicochemical
characteristics and antidepressant-like effects of a
polysaccharide-rich fraction from Schisandra chinensis
(Turcz.) Baill in behavioral despair mice and olfactory
bulbectomy-induced depression-like mice [J]. J Ethnopharmacol, 2024, 320: 117464.
[106] Fang Y, Li Y Q, Liao X, et al. Corydalis yanhusuo
polysaccharides ameliorate chronic stress-induced
depression in mice through gut microbiota-derived short
chain fatty acid activation of 5-hydroxytryptamine
signaling [J]. J Med Food, 2023, 26(12): 890-901.
[107] 田志锋, 曾璇, 严子涵, 等. 5-羟色胺与缝隙连接的交
互作用与抑郁症发病的关系及中药干预研究进展 [J].中草药, 2024, 55(21): 7539-7546.
[108] Comai S, Bertazzo A, Brughera M, et al. Tryptophan in health and disease [J]. Adv Clin Chem, 2020, 95: 165-218.
[109] Höglund E, Øverli Ø, Winberg S. Tryptophan metabolic
pathways and brain serotonergic activity: A comparative
review [J]. Front Endocrinol, 2019, 10: 158.
[110] Haq S, Grondin J A, Khan W I. Tryptophan-derived
serotonin-kynurenine balance in immune activation and
intestinal inflammation [J]. FASEB J, 2021, 35(10): e21888.
[111] Liaqat H, Parveen A, Kim S Y. Neuroprotective natural
products’ regulatory effects on depression via gut-brain
axis targeting tryptophan [J]. Nutrients, 2022, 14(16):
3270.
[112] O’Riordan K J, Collins M K, Moloney G M, et al. Short
chain fatty acids: Microbial metabolites for gut-brain axis signalling [J]. Mol Cell Endocrinol, 2022, 546: 111572.
[113] Abdelhalim K A. Short-chain fatty acids (SCFAs) from
gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer - A mini-review [J]. Chem Biol Interact, 2024, 388: 110851.
[114] Terova G, Díaz N, Rimoldi S, et al. Effects of sodium
butyrate treatment on histone modifications and the
expression of genes related to epigenetic regulatory
mechanisms and immune response in European sea bass
(Dicentrarchus labrax) fed a plant-based diet [J]. PLoS
One, 2016, 11(7): e0160332.
[115] Munteanu C, Galaction A I, Turnea M, et al. Redox
homeostasis, gut microbiota, and epigenetics in
neurodegenerative diseases: A systematic review [J].
Antioxidants, 2024, 13(9): 1062.
[116] Ortega M A, Alvarez-Mon M A, García-Montero C, et al. Gut microbiota metabolites in major depressive disorder deep insights into their pathophysiological role and potential translational applications [J]. Metabolites, 2022, 12(1): 50.
[117] Xiong L L, Wu Y N, Shu Q L, et al. The pharmacological
mechanism of Xiaoyaosan polysaccharide reveals
improvement of CUMS-induced depression-like behavior
by carbon source-triggered butyrate-producing bacteria
[J]. J Appl Microbiol, 2023, 134(4): lxad052.
[118] Lehours P, Ferrero R L. Review: Helicobacter:
Inflammation, immunology, and vaccines [J]. Helicobacter, 2019, 24: e12644.
[119] Lehmann M L, Weigel T K, Cooper H A, et al. Decoding
microglia responses to psychosocial stress reveals blood
brain barrier breakdown that may drive stress susceptibility [J]. Sci Rep, 2018, 8(1): 11240.
[120] Kwon H S, Koh S H. Neuroinflammation in
neurodegenerative disorders: The roles of microglia and
astrocytes [J]. Transl Neurodegener, 2020, 9(1): 42.
[121] Chen H F, Ma Y N, Chen M, et al. Safflower extract
improves depression in mice by inhibiting the TLR4-
NLRP3 inflammation signaling pathway [J]. Ann Palliat
Med, 2021, 10(7): 8015-8023.
[122] Shao Z K, Wu P, Wang X F, et al. Tetramethylpyrazine
protects against early brain injury and inhibits the
PERK/Akt pathway in a rat model of subarachnoid
hemorrhage [J]. Neurochem Res, 2018, 43(8): 1650-1659.
[123] Liu D Y, Zhu Y Y, Hou Z M, et al. Polysaccharides from
Astragalus membranaceus Bunge alleviate LPS-induced
neuroinflammation in mice by modulating microbe
metabolite-brain axis and MAPK/NF-κB signaling
pathway [J]. Int J Biol Macromol, 2025, 304(Pt 1): 140885.
[124] Xu M J, Wang J Y, Zhang X Y, et al. Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling [J]. J Ethnopharmacol, 2020, 256: 112798.
[125]Jiang Y D, Wang Z, Wang W S, et al. Ganoderma lucidum
polysaccharide alleviates cognitive dysfunction by
inhibiting neuroinflammation via NLRP3/NF-κB signaling pathway [J]. J Ethnopharmacol, 2025, 338(Pt 2): 119065.
[126] Zhong J, Qiu X, Yu Q, et al. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced
neuroinflammation and neurotoxicity by inhibiting TLR4-
mediated MyD88/NF-κB and PI3K/Akt signaling pathways [J]. Int J Biol Macromol, 2020, 163: 464-475.
[127] Xu F, Na L X, Li Y F, et al. Retraction Note to: Roles of the PI3K/Akt/mTOR signalling pathways in neurodegenerative diseases and tumours [J]. Cell Biosci,
2021, 11(1): 157.
[128] Tsimberidou A M, Skliris A, Valentine A, et al. Akt
inhibition in the central nervous system induces signaling
defects resulting in psychiatric symptomatology [J]. Cell
Biosci, 2022, 12(1): 56.
[129] Matsuda S, Ikeda Y, Murakami M, et al. Roles of
PI3K/Akt/GSK3 pathway involved in psychiatric illnesses
[J]. Diseases, 2019, 7(1): 22.
[130] Delva N C, Stanwood G D. Dysregulation of brain
dopamine systems in major depressive disorder [J]. Exp
Biol Med, 2021, 246(9): 1084-1093.
[131] Beaulieu J M. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin
neurotransmission in mental health [J]. J Psychiatry
Neurosci, 2012, 37(1): 7-16.
[132] Cargnello M, Roux P P. Activation and function of the
MAPKs and their substrates, the MAPK-activated protein
kinases [J]. Microbiol Mol Biol Rev, 2011, 75(1): 50-83.
[133] Philips G T, Ye X J, Kopec A M, et al. MAPK establishes
a molecular context that defines effective training patterns for long-term memory formation [J]. J Neurosci, 2013, 33(17): 7565-7573.
[134] Wang J Q, Mao L M. The ERK pathway: Molecular
mechanisms and treatment of depression [J]. Mol
Neurobiol, 2019, 56(9): 6197-6205.
[135] He Y X, Wang Y Y, Li X, et al. Lycium barbarum
polysaccharides improves cognitive functions in ICV
STZ-induced Alzheimer’s disease mice model by improving the synaptic structural plasticity and regulating
IRS1/PI3K/Akt signaling pathway [J]. Neuromolecular
Med, 2024, 26(1): 15.
[136] Yan T X, Nian T T, Wu B, et al. Okra polysaccharides can reverse the metabolic disorder induced by high-fat diet and cognitive function injury in Aβ1-42 mice [J]. Exp Gerontol, 2020, 130: 110802.
[137] Xu M J, Yan T X, Fan K Y, et al. Polysaccharide of
Schisandra Chinensis Fructus ameliorates cognitive
decline in a mouse model of Alzheimer’s disease [J]. J
Ethnopharmacol, 2019, 237: 354-365.
Song Z Y, Cheng L, Liu Y N, et al. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters [J]. Trends Food Sci Technol, 2022,129: 581-590.
[139] Shen F M, Song Z J, Xie P, et al. Polygonatum sibiricum
polysaccharide prevents depression-like behaviors by
reducing oxidative stress, inflammation, and cellular and
synaptic damage [J]. J Ethnopharmacol, 2021, 275: 114164.
[140] 楚胜. 枸杞多糖对创伤后应激障碍大鼠抑郁的保护作
用研究 [J]. 现代预防医学, 2019, 46(14): 2622-2625.
[141] 刘佳蕾, 王宇亮, 赵宏, 等. 百合多糖与黄芪多糖联用
对慢性应激小鼠抑郁行为的影响及机制 [J]. 中国实验方剂学杂志, 2022, 28(5): 62-70.
[142] Zhang Q P, Cheng J, Liu Q, et al. Dendrobium officinale polysaccharides alleviate depression-like symptoms via regulating gut microbiota-neuroinflammation in perimenopausal mice [J]. J Funct Foods, 2022, 88: 104912.
[143] Yin C X, Deng Y Y, Liu Y G, et al. Icariside II ameliorates cognitive impairments induced by chronic cerebral hypoperfusion by inhibiting the amyloidogenic pathway: Involvement of BDNF/TrkB/CREB signaling and up
regulation of PPARα and PPARγ in rats [J]. Front Pharmacol, 2018, 9: 1211.
[144] Wang C S, Kavalali E T, Monteggia L M. BDNF signaling
in context: From synaptic regulation to psychiatric
disorders [J]. Cell, 2022, 185(1): 62-76.
[145] Petralia R S, Al-Hallaq R A, Wenthold R J. Trafficking and targeting of NMDA receptors [J]. CRC Press/Taylor &
Francis, 2009.
[146] Marini A M, Rabin S J, Lipsky R H, et al. Activity
dependent release of brain-derived neurotrophic factor
underlies the neuroprotective effect of N-methyl-D
aspartate [J]. J Biol Chem, 1998, 273(45): 29394-29399.
[147] Yang Y, Fan L, Peng Y, et al. Alcohol-soluble
polysaccharides from Dendrobium officinale flowers as an
antidepressant by regulating the gut-brain axis [J]. Int J Biol Macromol, 2022, 216: 836-849.
[148] Yi L T, Zhang M M, Cheng J, et al. Antidepressant-like
effects of degraded porphyran isolated from Porphyra
haitanensis [J]. Mol Nutr Food Res, 2021, 65(9): e2000869.
[149] Zhang Y Y, Wang D Y, Liu J M, et al. Investigating the antidepressant mechanisms of Polygonum sibiricum
polysaccharides via microglial polarization [J].Nutrients, 2024, 16(3): 438.
[150] Chang L L, Wang C D, Peng J, et al. Rattan pepper
polysaccharide regulates DSS-induced intestinal inflammation and depressive behavior through microbiota-gut-brain axis [J]. J Agric Food Chem, 2024,
72(1): 437-448.
[151] Li X Y, Mo X, Liu T, et al. Efficacy of Lycium barbarum
polysaccharide in adolescents with subthreshold
depression: Interim analysis of a randomized controlled
study [J]. Neural Regen Res, 2022, 17(7): 1582-1587.
[152] Li X Y, Liu T, Mo X, et al. Effects of Lycium barbarum
polysaccharide on cytokines in adolescents with
subthreshold depression: A randomized controlled study
[J]. Neural Regen Res, 2024, 19(9): 2036-2040.
[153] Moludi J, Khedmatgozar H, Nachvak S M, et al. The
effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in
patients with coronary artery diseases: A randomized
clinical trial [J]. Nutr Neurosci, 2022, 25(8): 1659-1668.