Leptospirosis is a major cause of acute febrile illness, often presenting with non-specific symptoms that can lead to misdiagnosis. Early laboratory diagnosis is essential for confirmation to avoid misdiagnosis and ensure appropriate management. This study aimed to identify and produce a recombinant protein, approximately 25 kDa, with high antigenicity for diagnostic applications. The 25 kDa protein from Leptospira interrogans was identified as electron transfer flavoprotein beta subunits (Etfβ) and exhibited 98% nucleotide and 99% amino acid homology to the reference strain. Lateral flow assays (LFAs) using recombinant Etfβ (rEtfβ) as antigens were developed to detect specific antibodies, namely rEtfβ-IgM and rEtfβ-IgG, and evaluated their performance against the standard microscopic agglutination test (MAT). Testing 33 paired serum samples from confirmed leptospirosis cases and 24 controls revealed sensitivities of 69.7% for IgM and 57.6% for IgG. However, the combined assays yielded enhanced diagnostic accuracy, achieving a sensitivity of 94.0%, specificity of 95.8%, positive predictive value of 96.9%, negative predictive value of 92.0%, and percent agreement of 94.7% (kappa value of 0.89). Also, the combined LFAs demonstrated 66.7% in initial serum samples whose MAT results were negative, enhancing the capacity for early diagnosis. In conclusion, the developed rapid tests demonstrated strong diagnostic capability, particularly in early-phase leptospirosis, distinguishing between initial and recurrent infections. Importantly, rEtfβ-IgG identified a subset of patients lacking detectable IgM. Thus, integrating rEtfβ-IgM and rEtfβ-IgG is recommended to improve sensitivity and accuracy in endemic populations. The rEtfβ is a promising target for future antigen-based diagnostic strategies for leptospirosis. The rEtfβ antigen shows promise as a target for future development of antigen-based diagnostic strategies for leptospirosis.