Objective Loose bodies are free-floating tissues of cartilage and bone that can cause pain, swelling, the inability to straighten the knee, or intermittent locking of the knee. Loose bodies can arise from degenerative joint disease, flake fractures, osteochondritis dissecans, or chondromatosis. We hypothesized that loose bodies can be classified in stages with tissue characteristics similar to endochondral ossification. Design Loose bodies were harvested from patients undergoing joint replacement. Samples were processed for histology, gene expression analysis, and micro-computed tomography (µCT). Cartilage- and bone-related genes and proteins were selected for immunofluorescence stainings (collagen type I, II, and X, SOX9 [SRY-box transcription factor 9], and MMP13 [matrix metalloproteinase 13]) and gene expression analysis ( FN [fibronectin], COL1A1, COL2A1, COL10A1, SOX9, MMP13, and aggrecan [ ACAN]). Results Loose bodies were grouped in 4 stages: fibrous, (mineralized) cartilaginous, cartilage and bone, and bone. Hyaline-like cartilage tissue with Benninghoff arcades was present in stages 2 and 3. A transition from cartilaginous to mineralized tissue and bone trabecula was defined by an increase in COL1A1 and COL10A1 (stage 3 vs. 4: p = 0.047) positive area. Stage 4 showed typical trabecular bone tissue. The relative volume of calcified tissue (mineralized cartilage and bone tissue) decreased with stages (stages 1-2 vs. 3: p = 0.002; stage 1-2 vs. 4: p = 0.012). COL2A1 expression and stained area decreased from stages 1-2 to 4 ( p = 0.010 and p = 0.004). ACAN expression decreased from stage 1-2 to stage 3 ( p = 0.049) and stage 4 ( p = 0.002). Conclusion Loose bodies show tissue characteristics similar to endochondral ossification. They are probably a relevant substrate for regenerative therapeutic interventions in joint disease.