4'-Fluorouridine (4'-FU), despite demonstrating potent anti-SFTSV efficacy in vitro and in vivo, faces hindrances in its further development as a promising drug due to its weak chemical stability. Here, we report the discovery and development of VV261, a novel 4'-FU double prodrug with three isobutyryl groups on the ribose moiety and a nicotinoyloxymethyl group linked to the imide-nitrogen on the base moiety, exhibiting notable chemical stability and favorable pharmacokinetic properties. In SFTSV-infected mice, VV261 at 5 mg/kg/d for 7 days demonstrated complete protection against lethal SFTSV infection, prevented weight loss, and even a 2 day treatment significantly reduced both viral RNA copies and infectious virus titers in multiple organs, and notably alleviated splenic tissue lesions. After further preclinical evaluations, VV261, identified as a promising candidate drug for the treatment of SFTS, has entered Phase I clinical trials in China, the first such candidate to reach this stage for SFTS.