AbstractPassive transfer of colostral immunoglobulins from the cow to the calf is essential for calf health. The objective of this study was to determine if prepartum administration of a vaccine stimulates increased concentrations of colostral immunoglobulins of dairy cows beyond what is explained by vaccine-specific immunoglobulins. A prospective cohort study was conducted on a spring-calving commercial dairy farm that had a policy of only vaccinating cows with even ear tag numbers with a calf diarrhea vaccine, whereas cows with odd ear tag numbers were left unvaccinated. Cows in the vaccinated group (even ear tag numbers, n = 204) received a sensitizer and booster vaccination with a vaccine against bovine rotavirus (serotypes G6 and G10), bovine coronavirus, and E. coli having the K99 pili adherence factor. A sensitizer was given because the study vaccine was different from the vaccine previously used. Cows in the control group (odd ear tag numbers, n = 194) received a 2-mL subcutaneous sterile saline solution. Both groups received two treatments at a 3-wk interval, completing the treatments approximately 2 wk prior to the planned start of calving. During the calving period, technicians separated calves from cows immediately after parturition and prior to suckling, and cows were completely milked out within 6 h of parturition. Vaccine-specific, total, and nonvaccine-specific (total minus vaccine-specific) concentrations of immunoglobulin classes A, G1, G2a, and M (IgA, IgG1, IgG2a, and IgM, respectively) were quantified by mass spectrometry for 20 colostrum samples from each treatment group. Predicted mean non-vaccine-specific colostral IgM concentrations were 8.76 (95% CI = 7.18–10.67) and 5.78 (95% CI = 4.74–7.05) mg/mL for vaccinated and control cows, respectively (P = 0.005). Predicted mean non-vaccine-specific colostral IgG1 concentrations were 106.08 (95% CI = 92.07–120.08) and 95.30 (95% CI = 81.30–109.31) mg/mL among vaccinated and control cows, respectively; however, these means were not significantly different (P = 0.278). It is thus possible that the vaccine, in addition to specifically managing infectious calf diarrhea, may also have non-specific benefits by improving colostrum quality through increased non-vaccine-specific colostrum IgM concentrations. Further research is necessary to determine the mechanism for these preliminary findings, whether the effect may occur in other immunoglobulin classes, and what impacts it may have on calf health outcomes.