The overuse of antibiotics over an extended period has led to increasing antibiotic resistance in pathogenic bacteria, culminating in what is now considered a global health crisis. To tackle the escalating disaster caused by multidrug-resistant pathogens, the development of new bactericides with new action mechanism is highly necessary. In this study, using a biomimicking strategy, a series of new nonivamide derivatives that feature an isopropanolamine moiety [the structurally similar to the diffusible signal factor (DSF) of Xanthomonas spp.] were prepared for serving as potential quorum-sensing inhibitors (QSIs). After screening and investigation of their rationalizing structure-activity relationships (SARs), compound A26 was discovered as the most optimal active molecule, with EC50 values of 9.91 and 7.04 μg mL-1 against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). A docking study showed that compound A26 exhibited robust interactions with Glu A: 161 of RpfF, which was strongly evidenced by fluorescence titration assay (KA value for Xoo RpfF-A26 = 104.8709 M-1). Furthermore, various bioassays showed that compound A26 could inhibit various bacterial virulence factors, including biofilm formation, extracellular polysaccharides (EPS), extracellular enzyme activity, DSF production, and swimming motility. In addition, in vivo anti-Xoo results showed that compound A26 had excellent control efficiency (curative activity: 43.55 %; protective activity: 42.56 %), surpassing that of bismerthiazol and thiodiazole copper by approximately 8.0%-37.3 %. Overall, our findings highlight a new paradigm wherein nonivamide derivatives exhibit potential in combating pathogen resistance issues by inhibiting bacterial quorum sensing systems though attributing to their new molecular skeleton, novel mechanisms of action, and non-toxic features.