Abstract:As emerging two-dimensional (2D) materials, carbides and nitrides (MXenes) could be solid solutions or organized structures made up of multi-atomic layers. With remarkable and adjustable electrical, optical, mechanical, and electrochemical characteristics, MXenes have shown great potential in brain-inspired neuromorphic computing electronics, including neuromorphic gas sensors, pressure sensors and photodetectors. This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved. Key bottlenecks such as insufficient long-term stability under environmental exposure, high costs, scalability limitations in large-scale production, and mechanical mismatch in wearable integration hinder their practical deployment. Furthermore, unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neuromorphic signal conversion demand urgent attention. The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.