Article
作者: Cortez, Maria Angelica ; El Naggar, Adel ; Cooper, Zachary A ; Bell, Diana ; Sousa, Luana Guimaraes ; Kinneer, Krista ; Spardy Burr, Nicole ; Lin, Shiaw-Yih ; Ferri-Borgogno, Sammy ; Mitani, Yoshitsugu ; Lazar Neto, Felippe ; Dai, Hui ; Burks, Jared ; Marques-Piubelli, Mario L ; Ferrarotto, Renata ; Li, Kaiyi ; McGrail, Daniel J
PURPOSE:Adenoid cystic carcinoma (ACC) is a heterogeneous malignancy, and no effective systemic therapy exists for metastatic disease. We previously described two prognostic ACC molecular subtypes with distinct therapeutic vulnerabilities, ACC-I and ACC-II. In this study, we explored the ACC tumor microenvironment (TME) using RNA-sequencing and spatial biology to identify potential therapeutic targets.
EXPERIMENTAL DESIGN:Tumor samples from 62 ACC patients with available RNA-sequencing data that had been collected as part of previous studies were stained with a panel of 28 validated metal-tagged antibodies. Imaging mass cytometry (IMC) was performed using the Fluidigm Helios CyTOF instrument and analyzed with Visiopharm software. The B7-H4 antibody-drug conjugate AZD8205 was tested in ACC patient-derived xenografts (PDX).
RESULTS:RNA deconvolution revealed that most ACCs are immunologically "cold," with approximately 30% being "hot." ACC-I tumors with a poor prognosis harbored a higher density of immune cells; however, spatial analysis by IMC revealed that ACC-I immune cells were significantly restricted to the stroma, characterizing an immune-excluded TME. ACC-I tumors overexpressed the immune checkpoint B7-H4, and the degree of immune exclusion was directly correlated with B7-H4 expression levels, an independent predictor of poor survival. Two ACC-I/B7-H4-high PDXs obtained 90% complete responses to a single dose of AZD8205, but none were observed with isotype-conjugated payload or in an ACC-II/B7-H4 low PDX.
CONCLUSIONS:Spatial analysis revealed that ACC subtypes have distinct TMEs, with enrichment of ACC-I immune cells that are restricted to the stroma. B7-H4 is highly expressed in poor-prognosis ACC-I subtype and is a potential therapeutic target.