BACKGROUND:Acute myeloid leukemia (AML) is characterized by high heterogeneity, poor long-term survival, and a propensity for relapse. Exceptional efficacy in treating recurrent or refractory B-lymphoid malignancies has been demonstrated by Chimeric antigen receptor T cells (CAR-T cells). Given the therapeutic potential of targeting both CD33 and C-type lectin-like molecule-1 (CLL1) in AML, the development of a dual-targeting CD33-CLL1 CAR-T cells assumes significant importance.
MATERIALS AND METHODS:The expressions of CD33 and CLL-1 antigens in peripheral blood cells and bone marrow cells from AML patients was assessed. Subsequently, a Chimeric Antigen Receptor (CAR) incorporating a dual-specific single-chain variable fragment targeting CLL1 and CD33 (CD33-CLL1-CAR-T) was engineered. The anti-tumor efficacy and potential side effects of CD33-CLL1-CAR-T cells were comprehensively investigated in both in vitro and in vivo settings.
RESULTS:The constructed tandem CD33-CLL1 CAR-T exhibited potent cytotoxicity against leukemia cell lines and human primary AML cells in vitro. Co-cultivation of AML blasts with CD33-CLL1-CAR-T cells resulted in effective proliferation and the secretion of substantial quantities of GM-CSF and IFN-γ. Importantly, the impact of CD33-CLL1-CAR-T cells on normal hematopoietic stem cells was minimal, ensuring safety in vivo mouse models. Notably, significant anti-leukemic activity was observed in the mouse model, with CD33-CLL1-CAR-T cells leading to tumor eradication and prolonged survival.
DISCUSSION:The tandem CD33-CLL1 CAR-T cells not only efficiently eliminated AML blasts but also exhibited low cytotoxicity toward normal hematopoietic stem cells (HSCs). These findings underscore the potential clinical applicability of the tandem CD33-CLL1 CAR-T cells as an effective and safe treatment strategy for AML, representing a noteworthy advancement in the field of CAR-T cells therapy.