Abstract:Proteome-wide scale in a dose- and time-depending setting is crucial to fully understand the pharmacological mechanism of anticancer drugs as well as identification of candidates for drug response biomarkers. Here, we investigated the effect of the CIGB-300 anticancer peptide at IC50 and IC80 doses during 1 and 4 h of treatment on the squamous lung cancer cell (NCI-H226) proteome. An overwhelming dose-dependent inhibitory effect with minor up-regulated proteins was observed by increasing CIGB-300 dose level. Functional enrichment was also CIGB-300 dose-dependent with common or exclusively regulated proteins in each dose and time settings. A protein core involving small molecule biosynthesis, aldehyde metabolism and metabolism of nucleobases was regulated irrespectively to the dose or the treatment time. Importantly, a group of proteins linked to NSCLC tumor biology, poor clinical outcome and some Protein Kinase CK2 substrates, were significantly regulated by treating with both CIGB-300 doses. Likewise, we observed a consistent downregulation of different proteins that had been already reported to be inhibited by CIGB-300 in lung adenocarcinoma and acute myeloid leukemia. Overall, our proteomics-guided strategy based on time and drug dose served to uncover novel clues supporting the CIGB-300 cytotoxic effect and also to identify putative pharmacodynamic biomarkers in NSCLC.