First specific PET scan for TB could enable more effective treatment

2024-06-27
放射疗法
A more accurate way to scan for tuberculosis (TB) has been developed, using positron emission tomography (PET). The team has developed a new radiotracer, which is taken up by live TB bacteria in the body. Radiotracers are radioactive compounds which give off radiation that can be detected by scanners and turned into a 3D image. The new radiotracer, called FDT, enables PET scans to be used for the first time to accurately pinpoint when and where the disease is still active in a patient's lungs. A more accurate way to scan for tuberculosis (TB) has been developed by UK and US researchers, using positron emission tomography (PET). The team, from the Rosalind Franklin Institute, the Universities of Oxford and Pittsburgh and the National Institutes of Health in the USA, have developed a new radiotracer, which is taken up by live TB bacteria in the body. Radiotracers are radioactive compounds which give off radiation that can be detected by scanners and turned into a 3D image. The new radiotracer, called FDT, enables PET scans to be used for the first time to accurately pinpoint when and where the disease is still active in a patient's lungs. The researchers have put the new radiotracer through extensive pre-clinical trials with no adverse effects and it is now ready to go into Phase I trials in humans. Published in Nature Communications, the research was funded by the Gates Foundation and UK Research and Innovation. Two methods currently exist for TB diagnosis: testing for the TB bacteria in a patient's spit or a PET scan to look for signs of inflammation in the lung, using the common radiotracer FDG. However, a spit test can show a negative long before the disease has been fully treated in the lungs, which could result in patients finishing treatment too early. Scanning for inflammation can be helpful in seeing the extent of the disease, but it is not specific to TB, as inflammation can be caused by other conditions. Inflammation can also persist in the lung after the TB bacteria has been eliminated, leading to treatment continuing longer than necessary. The new approach developed by the researchers is more specific as it uses a carbohydrate that is only processed by the TB bacteria. A key advantage of the new approach is that it only requires a hospital to have standard radiation control and PET scanners, which are becoming more widely available throughout the world. The new molecule is created from FDG using a relatively simple process involving enzymes developed by the research team. This means it can be produced without specialist expertise or laboratories and so would be a viable option in low- and middle-income countries with less developed healthcare systems. These countries currently see over 80% of global TB cases and deaths from the disease. In 2021, 10.6 million people fell ill with TB and 1.6 million people died from the disease, making it the world's second leading infectious killer after COVID-19. Professor Ben Davis, Science Director of the Franklin's Next Generation Chemistry group, led the research. He said: "Finding an accurate way to identify when TB is still active in the body is not only important for initial diagnosis, but to ensure patients are receiving antibiotics long enough to kill the disease, and no longer. "The common radiotracer FDG and the enzymes we've developed to turn it into FDT can all be sent by post. With a minimum of additional training, this effective diagnostic in essence could be rolled out into most healthcare systems around the world -- and most importantly, in the places where this disease is still taking its greatest toll." Dr Clifton Barry III, from the National Institute of Allergy and Infectious DiseasesInfectious Diseases, said: "FDT will enable us to assess in real time whether the TB bacteria remains viable in patients who are receiving treatment, rather than having to wait to see whether or not they relapse with active disease. This means FDT could add significant value to clinical trials of new drugs, transforming the way they are tested for use in the clinic."
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
靶点
-
来和芽仔聊天吧
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。