Transition metal phosphides (TMPs) show promise in water electrolysis due to their electronic structures, which activate hydrogen/oxygen reaction intermediates. However, TMPs face limitations in catalytic efficiency due to insufficient active sites, poor conductivity, and multiple intermediate steps in water electrolysis. Here, we synthesize a highly efficient bifunctional self-supported electrocatalyst, which consists of an N-doped carbon shell anchored on Fe-doped CoP/Co2P arrays on nickel foam (NC@Fe-CoxP/NF) using hydrothermal and phosphorization techniques. Experimental and theoretical results indicate that the modified morphology, with increased active site density and a tunable electronic structure induced by Fe doping in the CoP/Co2P heterostructure, leads to superior water electrolysis performance. The resulting NC@Fe0.1-CoP/Co2P/NF catalyst exhibits overpotentials of 122 mV for the hydrogen evolution reaction (HER) and 270 mV for the oxygen evolution reaction (OER) at 100 mA cm-2. Furthermore, using NC@Fe0.1-CoP/Co2P/NF as both the cathode and anode in an alkaline electrolyzer enables the cell system to achieve 100 mA cm-2 at a voltage of 1.70 V, while maintaining long-term catalytic durability. This work may pave the way for designing self-supported, highly efficient electrocatalysts for practical water electrolysis applications.