Structural analysis and detection of optimal cell surface localization of labyrinthin, a pan-adenocarcinoma target, was studied with respect to adenocarcinoma specificity vs. normal and non-adenocarcinoma cells. Patient-derived tissue microarray immunohistochemistry (IHC) was performed on 729 commercially prepared tissue blocks of lung, colon, breast, pancreas, prostate, and ovary cancers combined, plus a National Cancer Institute (NCI) tissue microarray derived from another 236 cases. The results confirmed that anti-labyrinthin mouse monoclonal MCA 44-3A6 antibody recognized adenocarcinomas, but not normal or non-adenocarcinoma cancer cells. The consensus of multiple topology analysis programs on labyrinthin (255 amino acids) estimate a type II cell membrane associated protein with an N-terminus signal peptide. However, because the labyrinthin sequence is enveloped within the 758 amino acids of the intracellular aspartyl/asparaginyl beta-hydroxylase (ASPH), a purported tumor associated antigen, standard IHC methods that permeabilize cells can expose common epitopes. To circumvent antibody cross-reactivity, cell surface labyrinthin was distinguished from intracellular ASPH by FACS analysis of permeabilized vs non-permeabilized cells. All permeabilized normal, adeno-and non-adenocarcinoma cells produced a strong MCA 44-3A6 binding signal, likely reflecting co-recognition of intracellular ASPH proteins along with internalized labyrinthin, but in non-permeabilized cells only adenocarcinoma cells were positive for labyrinthin. Confocal microscopy confirmed the FACS results. Labyrinthin as a functional cell-surface marker was suggested when: 1) WI-38 normal lung fibroblasts transfected with labyrinthin sense cDNA displayed a cancerous phenotype; 2) antisense transfection of A549 human lung adenocarcinoma cells appeared more normal; and 3) MCA44-3A6 suppressed A549 cell proliferation. Collectively, the data indicate that labyrinthin is a unique, promising adenocarcinoma tumor-specific antigen and therapeutic target. The study also raises a controversial issue on the extent, specificity, and usefulness of ASPH as an adenocarcinoma tumor-associated antigen.