Long-range intercellular communication is essential for the regulation of embryonic development. Apart from simple diffusion, various modes of signal transfer have been described in the literature. Here, we describe a novel type of cellular extensions found in epithelial cells of the somites in chicken embryos. These filopodia-like protrusions span the subectodermal space overlying the dorsal surface of the somites and contact the ectoderm. We show that these protrusions are actin- and tubulin-positive and require Rac1 for their formation. The presence of glycophosphatidylinositol-anchored proteins and net retrograde trafficking of the transmembrane Wnt-receptor Frizzled-7 along the protrusions indicate their role in signal transport and distribution. Taken together, our data suggest a role of filopodia-like protrusions in mediating signaling events between distant epithelial cells during embryonic development.