Leishmaniasis is a zoonotic parasitic disease, and the main reservoir of the parasite is the dog, although recent years have seen an increase in other mammalian species. In the Mediterranean region, where it is an endemic disease, it is caused by the species Leishmania infantum. The Ibizan hound, an autochthonous breed of this region, appears to have a genetic resistance to parasitic infection, whereas other canine breeds, such as the Boxer, are susceptible to infection. These differences are related to the differentiated activation of the immune response, with the Ibizan hound activating the Th1 immune response, whereas the Boxer breed triggers the Th2 immune response. Cytokine levels and genomic haplotypes of several genes involved in the immune response were analysed in twenty-eight Ibizan hound (resistant canine breed model) and twenty-four Boxer (susceptible canine breed) without clinical signs in the Mediterranean region. Cytokine levels were analysed by ELISA commercial kits and haplotypes were studied using CanineHD DNA Analysis BeadChip including 165,480 mapped positions. The results show 126 haplotypes associated with differential immune response in dogs. Specifically, haplotypes in IL12RB1, IL6R, CIITA, THEMIS, NOXA1, HEY2, RAB38, SLC35D2, SLC28A3, RASEF and DAPK1 genes are associated with serum levels of IFN-γ, IL-2, IL-8, and IL-18. These results suggest that the resistance or susceptibility to Leishmania infantum infection could be a consequence of haplotypes in several genes related to immune response. Future studies are needed to elucidate the relationship of these haplotypes with immune response and gene expression regulation.