Neuro-inflammation contributes to neuropathic pain by sensitizing ionic channels. Kinsenoside, a traditional Chinese medicine, has recognized anti-inflammatory properties. However, it remains unclear whether kinsenoside can be used for pain therapy. Network pharmacology analysis revealed that 57 % of its targets are associated with pain, including inflammation and synaptic transmission. The analgesic effects of kinsenoside were confirmed in SNL and formalin rat models, with ED50 values of 47.99 μg and 36.80 μg, respectively. Transcriptome and WGCNA analyses indicated the involvement of cytokine release, anti-inflammatory activity, and synapse enrichment in the blue module. Furthermore, we confirmed that kinsenoside's efficacy was mainly mediated by IL-10 induction, phosphorylation of STAT3, and SOCS3 expression. Pretreatment with kinsenoside significantly inhibited the release of TNF-α, IL-1β, and IL-6. Kinsenoside also attenuated ER stress in both microglia and neural cells. Molecular docking analysis demonstrated significantly high binding energies of IL-10, STAT3, and SOCS3 with MHC. Additionally, whole-cell recordings revealed that bath application of kinsenoside reduced the frequency and amplitude of spinal glutamatergic transmission in a dose-dependent manner. In summary, pharmacological prediction and biological validation collectively indicate that kinsenoside significantly exerts significant analgesic effects by attenuating ER stress and inhibiting inflammatory responses via the IL-10/p-STAT3/SOCS3 axis, precisely regulating spinal glutamatergic transmission for pain relief.