Damage to the cholinergic input to the prefrontal cortex has been implicated in neuropsychiatric disorders. Cholinergic endings release acetylcholine, which activates nicotinic and/or G-protein-coupled muscarinic receptors. Muscarinic receptors activate transduction systems, which control cellular effectors that regulate the membrane potential in medial prefrontal cortex (mPFC) neurons. The mechanisms responsible for the cholinergic-dependent depolarization of mPFC layer V pyramidal neurons in slices obtained from young rats were elucidated in this study. Glutamatergic and GABAergic transmission as well as tetrodotoxin (TTX)-sensitive Na(+) and voltage-dependent Ca(++) currents were eliminated. Cholinergic receptor stimulation by carbamoylcholine chloride (CCh; 100 μM) evoked depolarization (10.0 ± 1.3 mV), which was blocked by M1/M4 (pirenzepine dihydrochloride, 2 μM) and M1 (VU 0255035, 5 μM) muscarinic receptor antagonists and was not affected by a nicotinic receptor antagonist (mecamylamine hydrochloride, 10 μM). CCh-dependent depolarization was attenuated by extra- (20 μM) or intracellular (50 μM) application of an inhibitor of the βγ-subunit-dependent transduction system (gallein). It was also inhibited by intracellular application of a βγ-subunit-binding peptide (GRK2i, 10μM). mPFC pyramidal neurons express Nav1.9 channels. CCh-dependent depolarization was abolished in the presence of antibodies against Nav1.9 channels in the intracellular solution and augmented by the presence of ProTx-I toxin (100 nM) in the extracellular solution. CCh-induced depolarization was not affected by the following reagents: intracellular transduction system blockers, including U-73122 (10 μM), chelerythrine chloride (5 μM), SQ 22536 (100 μM) and H-89 (2 μM); channel blockers, including Ba(++) ions (200 μM), apamin (100 nM), flufenamic acid (200 μM), 2-APB (200 μM), SKF 96365 (50 μM), and ZD 7288 (50 μM); and a Na(+)/Ca(++) exchanger blocker, benzamil (20 μM). We conclude that muscarinic M1 receptor-dependent depolarization in mPFC pyramidal neurons is evoked by the activation of Nav1.9 channels and that the signal transduction pathway involves G-protein βγ subunits.