Integration of nucleic acid sequences of Reticuloendotheliosis virus (REV) in Avipoxvirus(APV) has become commonplace. In this study, 4 strains of suspected Fowlpox virus (FPV) and 1 strain of suspected Pigeonpox virus (PPV) collected in Taiyuan, Shanxi Province were cultured in chicken embryos, and the 4b core protein gene was amplified by PCR, and the identity and genome similarity were determined by sequence analysis. The sequences between the end of ORF201 and the beginning of ORF203 of FPV and PPV were then amplified, sequenced, and subjected to sequence comparison to determine genome similarity. The results showed that the isolates were 4 strains of FPV and 1 strain of PPV. The 4 isolated strains of FPV belong to type A1 virus, with 100 % identity to each other and to the FWPV-09-Jilin strain isolated in Jilin, China, and the lowest identity to the type B2 virus TNPV5/NZL/2009, which is only 74 %. PPV belongs to type A2 virus, and its identity with local strain of fowlpox virus was 90.1 %, with the highest identity of 100 % with PPLH and ROPI/W370/ON/2012 and ow_2017_3 strains, which also belong to type A2 pigeonpox virus, and the lowest identity of 73.7 % with TNPV5/NZL/2009, a type B2 virus. The complete genome of REV sequences integrated into FPV and PPV were amplified, and 5 REV nucleic acid sequences were obtained after sequencing and concatenation, with lengths ranging from 7942 to 8005 bp. The identity analysis results indicate that it has high identity with isolates from Northeast China, Guangdong, and Guangxi regions in China. Based on its gp90 protein gene, the REV integrated into the poxvirus belong to type III, with the highest identity of 99.9% with strains such as APC-566 and CY1111, and the lowest identity with REV-Anhui1, at 95.4 %. The length of the pol gene varies among different strains of REV, and its encoded amino acid changes significantly after position 675, with deletions and alterations. This study indicates that all fowlpox viruses isolated in Taiyuan, Shanxi Province have integrated the entire REV gene sequence, with high identity between them. At the same time, it indicates that the pigeonpox virus isolate has also integrated the entire REV gene sequence, and has the highest identity with the integrated REV gene sequence in fowlpox virus.