Metastasis is the leading cause of mortality in cervical cancer (CC), with a particular prevalence of lymph node and lung metastases. Patients with CC who have developed distant metastases typically face a poor prognosis, and there is a scarcity of non-invasive strategies for predicting CC metastasis. In this study, we utilized label-free proteomics and untargeted metabolomics to analyze plasma samples from 25 non-metastatic, 14 with lung metastasis, and 15 with lymph node metastasis CC patients. Pathway enrichment analysis revealed a shared inflammatory process between the two metastatic groups, while the central carbon metabolism in cancer showed distinct features in the lung metastasis cohort. Additionally, cholesterol metabolism, hypoxia-inducible factor 1, and ferroptosis signaling pathways were specifically altered in the lymph node metastasis group. Utilizing the receiver operating characteristic curve analysis and Random Forest algorithm, we identified two distinct biomarker panels for the prediction of lung metastasis and lymph node metastasis, respectively. The lung metastasis panel includes properdin, neural cell adhesion molecule 1, and keratin 6 A, whereas the lymph node metastasis panel consists of quiescin sulfhydryl oxidase 1, paraoxonase 1, and keratin 6 A. Each panel exhibited significant diagnostic potential, with high area under the curve (AUC) values for lung metastasis (training set: 0.989, testing set: 0.789) and lymph node metastasis (training set: 0.973, testing set: 0.900). This study conducted an integrated proteomic and metabolomic analysis to clarify the factors contributing to lung and lymph node metastases in CC and has successfully established two biomarker panels for their prediction.