Spexin (SPX1) is a novel neuropeptide composed of 14 amino acids and well conserved across vertebrates, and it has been implicated in various physiological functions via galanin receptor 2 (GALR2) and GALR3. However, the detailed signaling pathways mediating its actions in target cells are still largely unknown. Accordingly, we addressed this issue in the present study using yellowtail kingfish as a model. SPX1 significantly increased CRE-luc activity in COS-7 cells expressing its cognate receptors GALR2a and GALR2b, and this stimulatory effect was attenuated by two inhibitors of the PKA pathway. Similarly, an evident induction of SRE-luc activity was observed when COS-7 cells transfected with GALR1b, GALR2a, GALR2b, GALR type 1, or GALR type 2 were challenged with SPX1, and two blockers of the PKC pathway suppressed this stimulatory action. Moreover, SPX1 markedly elevated NFAT-RE-luc activity in COS-7 cells expressing GALR1a, GALR2a, or GALR2b, and this promotion was inhibited by two antagonists of the Ca2+ route. Overall, our results have revealed that activation of six yellowtail kingfish galanin receptors by the SPX1 peptide may occur with different downstream signaling events, which could account for its pleotropic functions.