Breast cancer (BC) is the most common type of malignancy globally and the main reason why women die from tumours. The Warburg effect, a characteristic of tumor, describes how most solid tumour cells acclimatize to their diverse surroundings by relying heavily on aerobic glycolysis for production of energy. In addition to producing key metabolic intermediates that are crucial for the production of macromolecules, which enable cancer cell division, invasiveness, and drug resistance, the transformed energy metabolism also supplies tumor cells with ATP for cellular energy. Here, we evaluated the expression profile, prognostic significance, and clinical relevance of glucose-related genes in BC using a bioinformatic approach. To clarify the significance of glucose-related genes in the development of breast tumours, we also performed a functional enrichment investigation of deregulated genes using the STRING and KEGG portal. The study depicted that of the 61 genes examined, 8 genes had a fold change =± 1.5, that is, ADH1C, ADH4, ALDH1A3, ALDOC, FBP1, PCK1, PFKFB1, PFKFB3. Among the highly deregulated genes, ADH1C showed a fold change of -6.669. These deregulated genes were associated with poor prognosis. The study signifies that glucose related genes are highly dysregulated in breast cancer. Deregulation of glucose related genes is linked with a poor prognosis in BC individuals. Thus, targeting glucose related genes will provide an effective treatment approach for BC individuals.