AbstractPreterm birth affects about 10% of all live births with many resultant health challenges, including metabolic bone disease of prematurity (MBDP), which is characterized by elevated alkaline phosphatase, suppressed phosphate, and deficient skeletal development. Because of the lack of an animal model, very little is known about bone structure, strength, and quality after preterm birth. This study investigated the utility of a pig model to replicate clinical features of preterm birth, including MBDP, and sought to determine if early postnatal administration of IGF-1 was an effective treatment. Preterm pigs, born by caesarean section at 90% gestation, were reared in intensive care facilities (respiratory, thermoregulatory, and nutritional support) and compared with sow-reared term pigs born vaginally. Preterm pigs were systemically treated with vehicle or IGF-1 (recombinant human IGF-1/BP-3, 2.25 mg/kg/d). Tissues were collected at postnatal days 1, 5, and 19 (the normal weaning period in pigs). Most bone-related outcomes were affected by preterm birth throughout the study period, whereas IGF-1 supplementation had almost no effect. By day 19, alkaline phosphatase was elevated, phosphate and calcium were reduced, and the bone resorption marker C-terminal crosslinks of type I collagen was elevated in preterm pigs compared to term pigs. Preterm pigs also had decrements in femoral cortical cross-sectional properties, consistent with reduced whole-bone strength. Thus, the preterm pig model replicates many features of preterm bone development in infants, including features of MBDP, and allows for direct interrogation of skeletal tissues, enhancing the field’s ability to examine underlying mechanisms.