Foul-smelling organic sulfur gases removal of which is crucial for improving environmental quality and protecting human health. Herein, in this study, Pt single-atom (SA) loaded magnesium oxide (MgO) nanosheet catalysts were prepared, which exhibited the dual effects of anchored sulfur and activated oxygen that greatly enhanced the catalytic oxidation efficiency of methyl mercaptan (CH3SH), and 90 % complete oxidation of CH3SH could be achieved by Pt SA/MgO at 325 °C, with an oxidation efficiency that was 8 times higher than that of MgO nanosheets. A series of characterization results indicate that the valence state of Pt in the Pt SA/MgO catalyst ranges between 0 and +4, demonstrating its inherent electron-donating capability. Theoretical calculations show that the oxygen vacancy formation energy is reduced to 4.0 eV after the introduction of Pt SA, and the adsorption energy of atomic groups SH and CH3 is reduced to -1.5 and -2.0 eV. And the bond length of the MgO bond in Pt SA/MgO is shortened to 2.083 Å, forming an asymmetric structure with the PtO bond of 2.142 Å, effectively activating the lattice oxygen. Furthermore, A series of activity tests confirmed that the introduction of Pt SA reduced sulfate deposition, while the reaction pathway of CH3SH catalytic oxidation was optimised by changing the oxidation mechanism. The investigation offers a significant experimental foundation and novel viewpoints for the enhancement of high-performance catalytic oxidation catalysts targeting sulfur-containing volatile organic compounds (VOCs).