101BHG-D01 is a novel, long-acting and selective muscarinic receptor antagonist for the treatment of chronic obstructive pulmonary disease (COPD) and rhinorrhea in rhinitis. To support its clinical study, several liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for the quantification of 101BHG-D01 and its main metabolite M6 in human plasma, urine and feces were developed. The plasma samples were prepared by protein precipitation, and the urine and fecal homogenate samples were pretreated by direct dilution, respectively. The chromatographic separation was performed on an Agilent InfinityLab Poroshell 120 C18 column with 0.1% formic acid and 10.0 mM ammonium acetate buffer solution in water and methanol as the mobile phase. The MS/MS analysis was performed by using multiple reaction monitoring (MRM) under a positive ion electrospray ionization mode. The methods were validated with regards to selectivity, linearity, lower limit of quantitation (LLOQ), accuracy and precision, matrix effect, extraction recovery, dilution integrity, batch size, carryover and stability. The calibration ranges were as follows: 1.00-800 pg/mL for 101BHG-D01 and 1.00-20.0 pg/mL for M6 in plasma; 0.0500-20.0 ng/mL for 101BHG-D01 and M6 in urine; 0.400-400 ng/mL for 101BHG-D01 and 0.100-100 ng/mL for M6 in feces. There was no endogenous or cross interference observed at the retention time of the analytes and internal standard in various biological matrices. Across these matrices, for the lower limit of quantitation quality control (LLOQ QC) samples, the intra- and inter-batch coefficients of variation were within 15.7%. For other QC samples, the intra- and inter-batch coefficients of variation were within 8.9%. The intra- and inter-batch accuracy deviations for all QC samples were within the range of - 6.2-12.0%. No significant matrix effect was observed from the matrices. The extraction recoveries of these methods at different concentrations were consistent and reproducible. The analytes were stable in different matrices under various storage conditions. The other bioanalytical parameters were also fully validated and met the criteria given in the FDA guidance. These methods were successfully applied to a clinical study in healthy Chinese subjects after a single dose administration of 101BHG-D01 inhalation aerosol. After inhalation, 101BHG-D01 was absorbed into plasma rapidly with the time to reach the maximum drug concentration (Tmax) of 5 min and eliminated slowly with a half-life time about 30 h. The cumulative urinary and fecal excretion rates revealed 101BHG-D01 was mainly excreted in feces, rather than urine. The pharmacokinetic results of the study drug laid a foundation for its further clinical development.