Uyghur medicine is one of the four major ethnic medicines in China and is a component of traditional Chinese medicine. The intrinsic quality of Uyghur medicinal materials will directly affect the clinical efficacy of Uyghur medicinal preparations. However, in recent years, problems such as adulteration of Uyghur medicinal materials and foreign bodies with the same name still exist, so it is necessary to strengthen the quality control of Uyghur medicines to guarantee Uyghur medicinal efficacy. Identifying the components of Uyghur medicines can clarify the types of medicinal materials used, is a crucial step to realizing the quality control of Uyghur medicines, and is also an important step in screening the effective components of Uyghur medicines. Currently, the method of identifying the components of Uyghur medicines relies on manual detection, which has the problems of high toxicity of the unfolding agent, poor stability, high cost, low efficiency, etc. Therefore, this paper proposes a method based on Raman spectroscopy and multi-label deep learning model to construct a model Mix2Com for accurate identification of Uyghur medicine components. The experiments use computer-simulated mixtures as the dataset, introduce the Long Short-Term Memory Model (LSTM) and Attention mechanism to encode the Raman spectral data, use multiple parallel networks for decoding, and ultimately realize the macro parallel prediction of medicine components. The results show that the model is trained to achieve 90.76% accuracy, 99.41% precision, 95.42% recall value and 97.37% F1 score. Compared to the traditional XGBoost model, the method proposed in the experiment improves the accuracy by 49% and the recall value by 18%; compared with the DeepRaman model, the accuracy is improved by 9% and the recall value is improved by 14%. The method proposed in this paper provides a new solution for the accurate identification of Uyghur medicinal components. It helps to improve the quality standard of Uyghur medicinal materials, advance the research on screening of effective chemical components of Uyghur medicines and their action mechanisms, and then promote the modernization and development of Uyghur medicine.